Complex Analysis and Operator Theory

, Volume 12, Issue 6, pp 1469–1480 | Cite as

Horizontal Weighted Hardy–Rellich Type Inequalities on Stratified Lie Groups

  • Bolys SabitbekEmail author
  • Durvudkhan Suragan


This paper is devoted to present a version of horizontal weighted Hardy–Rellich type inequality on stratified Lie groups and study some of its consequences. In particular, Sobolev type spaces are defined on stratified Lie groups and proved embedding theorems for these functional spaces.


Hardy–Rellich inequality Caffarelli–Kohn–Nirenberg inequality Horizontal estimate Stratified group Sobolev type spaces Embedding theorem 

Mathematics Subject Classification

22E30 43A80 


  1. 1.
    Badiale, N., Tarantello, G.: A Sobolev–Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics. Arch. Ration. Mech. Anal. 163, 259–293 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Costa, D.G.: Some new and short proofs for a class of Caffarelli–Kohn–Nirenberg type inequalities. J. Math. Anal. Appl. 337, 311–317 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Costa, D.G.: On Hardy–Rellich type inequalities in \({\mathbb{R}}^{N}\). Appl. Math. Lett. 22, 902–905 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    D’Ambrosio, L.: Some Hardy inequalities on the Heisenberg group. Differ. Equ. 40(4), 552–564 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Di, Y., Jiang, L., Shen, S., Jin, Y.: A note on a class of Hardy–Rellich type inequalities. J. Inequal. Appl. 84, 1–6 (2013)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Fischer, V., Ruzhansky, M.: Quantization on Nilpotent Lie Groups Volume 314 of Progress in Mathematics. Birkhäuser, Basel (2016)CrossRefGoogle Scholar
  7. 7.
    Ruzhansky, M., Suragan, D.: On Kac’s principle of not feeling the boundary for the Kohn Laplacian on the Heisenberg group. Proc. Am. Math. Soc. 144(2), 709–721 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ruzhansky, M., Suragan, D.: Layer potentials, Kac’s problem, and refined Hardy inequality on homogeneous Carnot groups. Adv. Math. 308, 483–528 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ruzhansky, M., Suragan, D.: On horizontal Hardy, Rellich and Caffarelli–Kohn–Nirenberg inequalities on stratified groups. J. Differ. Equ. 262, 1799–1821 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ruzhansky, M., Suragan, D.: Anisotropic L2-weighted Hardy and L2-Caffarelli–Kohn–Nirenberg inequalities. Commun. Contemp. Math. doi: 10.1142/S0219199717500146
  11. 11.
    Ruzhansky, M., Suragan, D.: Local Hardy and Rellich inequalities for sums of squares of vector fields. Adv. Differ. Equ. (to appear). arXiv:1601.06157

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Institute of Mathematics and Mathematical ModellingAlmatyKazakhstan
  2. 2.Al-Farabi Kazakh National UniversityAlmatyKazakhstan

Personalised recommendations