Complex Analysis and Operator Theory

, Volume 11, Issue 3, pp 603–610 | Cite as

Parseval-Type Relations and \(L^p\)-Inequalities for the Operators with Complex Gaussian Kernels



In this paper we study new \(L^p\)–boundedness properties for the integral transform with complex Gaussian kernel over \(L^p ({\mathbb {R}},(1+x^2)^{\alpha } dx)\), \(1\le p \le \infty \), \(\alpha \in {\mathbb {R}}\). We also obtain Parseval-type relations over these spaces. The Gauss–Weierstrass semigroup on \({\mathbb {R}}\) is analyzed as a particular case.


Complex Gaussian kernels \(L^p\)-Inequalities Parseval-type relations Gauss–Wierstrass semigroup 

Mathematics Subject Classification

Primary 44A15 Secondary 46E30 


  1. 1.
    Alpay, D., Jorgensen, P., Levanony, D.: A class of Gaussian processes with fractional spectral measures. J. Funct. Anal. 261, 507–541 (2011)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Epperson, J.B.: The hypercontractive approach to exactly bounding an operator with complex Gaussian kernel. J. Funct. Anal. 87(1), 1–30 (1989)MathSciNetCrossRefGoogle Scholar
  3. 3.
    González, B.J., Negrín, E.R.: Boundedness properties for a class of integral operators including the index transforms and the operators with complex Gaussians kernels. J. Math. Anal. Appl. 293(1), 219–226 (2004)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Hayek, N., González, B.J., Negrín, E.R.: On certain integral operators between weighted \(L^p\) spaces. J. Appl. Funct. Anal. 1(2), 191–201 (2006)MathSciNetMATHGoogle Scholar
  5. 5.
    Hayek, N., Srivastava, H.M., González, B.J., Negrín, E.R.: A family of Wiener transforms associated with a pair of operators on Hilbert space. Integral Transform. Spec. Funct. 24, 1–8 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Lieb, E.H.: Gaussian kernels have only Gaussian maximizers. Invent. Math. 102(1), 179–208 (1990)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Negrín, E.R.: Operators with complex Gaussian kernels: boundedness properties. Proc. Amer. Math. Soc. 123(4), 1185–1190 (1995)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Negrín, E.R.: Complex Gaussian operators in dimension one. Bull. Inst. Math. Acad. Sinica 23(1), 37–53 (1995)MathSciNetMATHGoogle Scholar
  9. 9.
    Weissler, F.B.: Two-point inequalities, the Hermite semigroup, and the Gauss–Weierstrass semigroup. J. Funct. Anal. 32(1), 102–121 (1979)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Departamento de Análisis Matemático Facultad de CienciasUniversidad de La Laguna (ULL) Campus de AnchietaLa Laguna (Tenerife)Spain

Personalised recommendations