Skip to main content
Log in

Riemann Boundary Value Problem on Quasidisks, Faber Isomorphism and Grunsky Operator

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

Let \(\Gamma \) be a bounded Jordan curve with complementary components \(\Omega ^{\pm }\). We show that the jump decomposition is an isomorphism if and only if \(\Gamma \) is a quasicircle. We also show that the Bergman space of \(L^{2}\) harmonic one-forms on \(\Omega ^{+}\) is isomorphic to the direct sum of the holomorphic Bergman spaces on \(\Omega ^{+}\) and \(\Omega ^{-}\) if and only if \(\Gamma \) is a quasicircle. This allows us to derive various relations between a reflection of harmonic functions in quasicircles and the jump decomposition on the one hand, and the Grunsky operator, Faber series and kernel functions of Schiffer on the other hand. It also leads to new interpretations of the Grunsky and Schiffer operators. We show throughout that the most general setting for these relations is quasidisks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baranov, A., Hedenmalm, H.: Boundary properties of Green functions in the plane. Duke Math. J. 145(1), 1–24 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bergman, S., Schiffer, M.: Kernel functions and conformal mapping. Compos. Math. 8, 205–249 (1951)

    MathSciNet  MATH  Google Scholar 

  3. Çavuş, A.: Approximation by generalized Faber series in Bergman spaces on finite regions with a quasiconformal boundary. J. Approx. Theory 87(1), 25–35 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Courant, R.: Dirichlet’s principle, conformal mapping, and minimal surfaces. With an appendix by M. Schiffer. Reprint of the 1950 original. Springer, New York (1977)

    Google Scholar 

  5. Duren, P.: Univalent functions, Grundlehren der Mathematischen Wissenschaften 259. Springer, New York (1983)

    Google Scholar 

  6. Lehto, O.: Univalent functions and Teichmüller spaces, Graduate Texts in Mathematics, vol. 109. Springer, New York (1987)

    Book  MATH  Google Scholar 

  7. Markushevich, A.I.: Theory of functions of a complex variable, vol. I, II, III. Translated and edited by Richard A. Silverman. Second English edn. Chelsea Publishing Co., New York (1977)

  8. Osborn, H.: The Dirichlet functional I. J. Math. Anal. Appl. 1, 61–112 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  9. Penfound, B., Schippers, E.: Power matrices for Faber polynomials and conformal welding. Complex Var. Elliptic Equ. 58(9), 1247–1259 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pommerenke, C.: Univalent functions. With a chapter on quadratic differentials by Gerd Jensen. Studia Mathematica/Mathematische Lehrbücher, Band XXV. Vandenhoeck & Ruprecht, Göttingen (1975)

  11. Schiffer, M.: The kernel function of an orthonormal system. Duke Math. J. 13, 529–540 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  12. Schiffer, M.: Fredholm eigenvalues and Grunsky matrices. Ann. Polon. Math. 39, 149–164 (1981)

    Article  MathSciNet  Google Scholar 

  13. Schiffer, M.: Menahem Max Schiffer: selected papers. vol. 1. In: Duren, P., Zalcman, L. (eds.) Contemporary Mathematicians. Birkhäuser/Springer, New York (2013)

  14. Schiffer, M.: Menahem Max Schiffer: selected papers. vol. 2. In: Duren, P., Zalcman, L. (eds.) Contemporary Mathematicians. Birkhäuser/Springer, New York (2014)

  15. Schippers, E., Staubach, W.: Harmonic reflection in quasicircles and well-posedness of a Riemann–Hilbert problem on quasidisks. arXiv:1604.08453

  16. Shen, Y.: Faber polynomials with applications to univalent functions with quasiconformal extensions. Sci. China Ser. A 52(10), 2121–2131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Suetin, P.K.: Series of Faber polynomials, Translated from the 1984 Russian original by E. V. Pankratiev [E. V. Pankrat’ev]. Analytical Methods and Special Functions, 1. Gordon and Breach Science Publishers, Amsterdam (1998)

  18. Takhtajan, L., Teo, L.-P.: Weil-Petersson metric on the universal Teichmüller space. Memoirs of the American Mathematical society, vol. 183, American Mathematical Society, Providence (2006)

Download references

Acknowledgments

Funding was provided by Wenner-Gren Foundation (http://dx.doi.org/10.13039/100001388 and NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Schippers.

Additional information

Communicated by Lawrence Zalcman.

E. Schippers and W. Staubach are grateful for the financial support from the Wenner-Gren Foundations. Eric Schippers is also partially supported by the National Sciences and Engineering Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schippers, E., Staubach, W. Riemann Boundary Value Problem on Quasidisks, Faber Isomorphism and Grunsky Operator. Complex Anal. Oper. Theory 12, 325–354 (2018). https://doi.org/10.1007/s11785-016-0598-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-016-0598-4

Keywords

Mathematics Subject Classification

Navigation