Advertisement

Complex Analysis and Operator Theory

, Volume 11, Issue 1, pp 161–174 | Cite as

A Note on the Spectrum of Composition Operators on Spaces of Real Analytic Functions

  • José BonetEmail author
  • Paweł Domański
Article
  • 191 Downloads

Abstract

In this paper the spectrum of composition operators on the space of real analytic functions is investigated. In some cases it is completely determined while in some other cases it is only estimated.

Keywords

Spaces of real analytic functions Composition operator Spectrum 

Mathematics Subject Classification

Primary 47B33 46E10 Secondary 47A10 

Notes

Acknowledgments

The research of the authors was partially supported by MEC and FEDER Project MTM2013-43540-P and the work of of Bonet by the Grant GV Project Prometeo II/2013/013. The research of Domański was supported by National Center of Science, Poland, Grant No. DEC-2013/10/A/ST1/00091.

References

  1. 1.
    Belitskii, G., Lyubich, Y.: The Abel equation and total solvability of linear functional equations. Studia Math. 127, 81–97 (1998)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Belitskii, G., Lyubich, Y.: The real analytic solutions of the Abel functional equation. Studia Math. 134, 135–141 (1999)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Belitskii, G., Tkachenko, V.: One-Dimensional Functional Equations. Springer, Basel (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Belitskii, G., Tkachenko, V.: Functional equations in real analytic functions. Studia Math. 143, 153–174 (2000)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bonet, J., Domański, P.: Power bounded composition operators on spaces of analytic functions. Collect. Math. 62, 69–83 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bonet, J., Domański, P.: Hypercyclic composition operators on spaces of real analytic fucntions. Math. Proc. Cambridge Phil. Soc. 153, 489–503 (2012)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bonet, J., Domański, P.: Abel’s functional equation and eigenvalues of composition operators on spaces of real analytic functions. Integr. Equ. Oper. Theor. 81, 455–482 (2015). doi: 10.1007/s00020-014-2175-4 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cartan, H.: Variétés analytiques réelles et variétés analytiques complexes. Bull. Soc. Math. France 85, 77–99 (1957)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Domański, P.: Notes on real analytic functions and classical operators, Topics in Complex Analysis and Operator Theory (Winter School in Complex Analysis and Operator Theory, Valencia, February 2010), Contemporary Math. 561 (2012) 3–47. Amer. Math. Soc, Providence (2012)Google Scholar
  10. 10.
    Domański, P., Goliński, M., Langenbruch, M.: A note on composition operators on spaces of real analytic functions. Ann. Polon. Mat. 103, 209–216 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Domański, P., Langenbruch, M.: Composition operators on spaces of real analytic functions. Math. Nachr. 254–255, 68–86 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Domański, P., Langenbruch, M.: Coherent analytic sets and composition of real analytic functions. J. reine angew. Math. 582, 41–59 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Domański, P., Langenbruch, M.: Composition operators with closed image on spaces of real analytic functions. Bull. Lond. Math. Soc. 38, 636–646 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Domański, P., Vogt, D.: The space of real analytic functions has no basis. Studia Math. 142, 187–200 (2000)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Hörmander, L.: An Introduction to Complex Analysis in Several Variables. North Holland, Amsterdam (1986)zbMATHGoogle Scholar
  16. 16.
    Meise, R., Vogt, D.: Introduction to Functional Analysis. Clarendon, Oxford (1997)zbMATHGoogle Scholar
  17. 17.
    Smajdor, W.: On the existence and uniqueness of analytic solutions of the functional equation \(\varphi (z)=h(z,\varphi [f(z)])\). Ann. Polon. Math. 19, 37–45 (1967)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Instituto Universitario de Matemática Pura y Aplicada IUMPAUniversitat Politècnica de ValènciaValenciaSpain
  2. 2.Faculty of Mathematics and Computer ScienceA. Mickiewicz University PoznańPoznańPoland

Personalised recommendations