Abstract
We consider the problem of sampling in de Branges spaces and develop some necessary conditions and some sufficient conditions for sampling sequences, which generalize some well-known sampling results in the Paley–Wiener space. These conditions are obtained by identifying the main construction with Naimark dilation of frames-embedding the de Branges space into a larger de Branges space while embedding the kernel functions associated with a sampling sequence into a Riesz basis for the larger space.
Similar content being viewed by others
References
al-Sa’di, S., Weber, E.: Necessary density conditions for sampling and interpolation in de Branges spaces. Operator methods in wavelets, tilings, and frames. Contemp. Math. 626, 129–147 (2014). (Amer. Math. Soc., Providence, RI)
Balan, R.: Density and redundancy of the noncoherent Weyl–Heisenberg superframes. The functional and harmonic analysis of wavelets and frames (San Antonio, TX, 1999). Contemp. Math. 247, 29–41 (1999). (Amer. Math. Soc., Providence, RI)
Baranov, A.: Completeness and Riesz bases of reproducing kernels in model subspaces. Int. Math. Res. Not. Art. ID 81530, 34 (2006)
Benedetto, J., Ferriera, P.J.S.G. (eds.): Modern Sampling Theory. Birkhauser, Basel (2001)
Bhatt, G., Johnson, B., Weber, E.: Orthogonal wavelet frames and vector valued wavelet transforms. Appl. Comp. Harmonic Anal. 23(2), 215–234 (2007)
Casazza, P.: The art of frame theory. Taiwanese J. Math. 4(2), 129–201 (2000)
de Branges, L.: Some Hilbert spaces of entire functions. Proc. Am. Math. Soc. 10, 840–846 (1959)
de Branges, L.: Some Hilbert spaces of entire functions. Trans. Am. Math. Soc. 96, 259–295 (1960)
de Branges, L.: Some Hilbert spaces of entire functions. II. Trans. Am. Math. Soc. 99, 118–152 (1961)
de Branges, L.: Some Hilbert spaces of entire functions. II. Trans. Am. Math. Soc. 100, 73–115 (1961)
de Branges, L.: Hilbert Spaces of Entire Functions. Prentice-Hall, Inc, Englewood Cliffs (1968)
Duffin, R., Schaeffer, A.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)
Gröchenig, K., Razafinjatovo, H.: On Landau’s necessary density conditions for sampling and interpolation of band-limited functions. J. London Math. Soc. (2) 54(3), 557–565 (1996)
Han, D., Larson, D.: Frames, bases and group representations. Mem. Am. Math. Soc. 147, 697 (2000). (AMS, Providence, RI)
Han, D., Kornelson, K., Larson, D., Weber, E.: Frames for Undergraduates. Student Mathematical Library, vol. 40. American Mathematical Society, Providence (2007)
Koosis, P.: Introduction to \(H_p\) Spaces, Cambridge Tracts in Mathematics, vol. 115, 2nd edn. Cambridge University Press, Cambridge (1998). (With two appendices by V. P. Havin [Viktor Petrovich Khavin])
Landau, H.J.: Necessary density conditions for sampling and interpolation of certain entire function. Acta Math. 117, 37–52 (1967)
Lyubarskii, Y.I., Seip, K.: Weighted Paley–Wiener spaces. J. Am. Math. Soc. 15(4), 979–1006 (2002). (electronic)
Marzo, J., Nitzan, S., Olsen, J.-F.: Sampling and interpolation in de Branges spaces with doubling phase. J. Anal. Math 117, 365–395 (2012)
Neumark, M.: Spectral functions of a symmetric operato. Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 4, 277–318 (1940)
Neumark, M.A.: On a representation of additive operator set functions. C. R. (Doklady) Acad. Sci. URSS (N.S.) 41, 359–361 (1943)
Ortega-Cerdà, J., Seip, K.: Fourier frames. Ann. Math. (2) 155(3), 789–806 (2002)
Weber, E.: Orthogonal frames of translates. Appl. Comput. Harmonic Anal. 17(1), 69–90 (2004)
Acknowledgments
We thank the anonymous referee for numerous helpful suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Daniel Aron Alpay.
Rights and permissions
About this article
Cite this article
al-Sa’di, S., Weber, E.S. Sampling in de Branges Spaces and Naimark Dilation. Complex Anal. Oper. Theory 11, 583–601 (2017). https://doi.org/10.1007/s11785-016-0580-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11785-016-0580-1