Skip to main content
Log in

Sampling in de Branges Spaces and Naimark Dilation

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

We consider the problem of sampling in de Branges spaces and develop some necessary conditions and some sufficient conditions for sampling sequences, which generalize some well-known sampling results in the Paley–Wiener space. These conditions are obtained by identifying the main construction with Naimark dilation of frames-embedding the de Branges space into a larger de Branges space while embedding the kernel functions associated with a sampling sequence into a Riesz basis for the larger space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. al-Sa’di, S., Weber, E.: Necessary density conditions for sampling and interpolation in de Branges spaces. Operator methods in wavelets, tilings, and frames. Contemp. Math. 626, 129–147 (2014). (Amer. Math. Soc., Providence, RI)

  2. Balan, R.: Density and redundancy of the noncoherent Weyl–Heisenberg superframes. The functional and harmonic analysis of wavelets and frames (San Antonio, TX, 1999). Contemp. Math. 247, 29–41 (1999). (Amer. Math. Soc., Providence, RI)

  3. Baranov, A.: Completeness and Riesz bases of reproducing kernels in model subspaces. Int. Math. Res. Not. Art. ID 81530, 34 (2006)

  4. Benedetto, J., Ferriera, P.J.S.G. (eds.): Modern Sampling Theory. Birkhauser, Basel (2001)

    MATH  Google Scholar 

  5. Bhatt, G., Johnson, B., Weber, E.: Orthogonal wavelet frames and vector valued wavelet transforms. Appl. Comp. Harmonic Anal. 23(2), 215–234 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Casazza, P.: The art of frame theory. Taiwanese J. Math. 4(2), 129–201 (2000)

    MathSciNet  MATH  Google Scholar 

  7. de Branges, L.: Some Hilbert spaces of entire functions. Proc. Am. Math. Soc. 10, 840–846 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  8. de Branges, L.: Some Hilbert spaces of entire functions. Trans. Am. Math. Soc. 96, 259–295 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  9. de Branges, L.: Some Hilbert spaces of entire functions. II. Trans. Am. Math. Soc. 99, 118–152 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  10. de Branges, L.: Some Hilbert spaces of entire functions. II. Trans. Am. Math. Soc. 100, 73–115 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  11. de Branges, L.: Hilbert Spaces of Entire Functions. Prentice-Hall, Inc, Englewood Cliffs (1968)

    MATH  Google Scholar 

  12. Duffin, R., Schaeffer, A.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gröchenig, K., Razafinjatovo, H.: On Landau’s necessary density conditions for sampling and interpolation of band-limited functions. J. London Math. Soc. (2) 54(3), 557–565 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Han, D., Larson, D.: Frames, bases and group representations. Mem. Am. Math. Soc. 147, 697 (2000). (AMS, Providence, RI)

  15. Han, D., Kornelson, K., Larson, D., Weber, E.: Frames for Undergraduates. Student Mathematical Library, vol. 40. American Mathematical Society, Providence (2007)

  16. Koosis, P.: Introduction to \(H_p\) Spaces, Cambridge Tracts in Mathematics, vol. 115, 2nd edn. Cambridge University Press, Cambridge (1998). (With two appendices by V. P. Havin [Viktor Petrovich Khavin])

  17. Landau, H.J.: Necessary density conditions for sampling and interpolation of certain entire function. Acta Math. 117, 37–52 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lyubarskii, Y.I., Seip, K.: Weighted Paley–Wiener spaces. J. Am. Math. Soc. 15(4), 979–1006 (2002). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  19. Marzo, J., Nitzan, S., Olsen, J.-F.: Sampling and interpolation in de Branges spaces with doubling phase. J. Anal. Math 117, 365–395 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Neumark, M.: Spectral functions of a symmetric operato. Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 4, 277–318 (1940)

    MathSciNet  MATH  Google Scholar 

  21. Neumark, M.A.: On a representation of additive operator set functions. C. R. (Doklady) Acad. Sci. URSS (N.S.) 41, 359–361 (1943)

    MathSciNet  MATH  Google Scholar 

  22. Ortega-Cerdà, J., Seip, K.: Fourier frames. Ann. Math. (2) 155(3), 789–806 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Weber, E.: Orthogonal frames of translates. Appl. Comput. Harmonic Anal. 17(1), 69–90 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank the anonymous referee for numerous helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric S. Weber.

Additional information

Communicated by Daniel Aron Alpay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

al-Sa’di, S., Weber, E.S. Sampling in de Branges Spaces and Naimark Dilation. Complex Anal. Oper. Theory 11, 583–601 (2017). https://doi.org/10.1007/s11785-016-0580-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-016-0580-1

Keywords

Mathematics Subject Classification

Navigation