Abstract
We characterize a holomorphic positive definite function f defined on a horizontal strip of the complex plane as the Fourier–Laplace transform of a unique exponentially finite measure on \({\mathbb R}\). With this characterization, the classical theorems of Bochner on positive definite functions and of Widder on exponentially convex functions become respectively the real and imaginary sections of the corresponding complex integral representation. We provide minimal holomorphy assumptions for this characterization and derive conclusions for meromorphic functions under minimal positive definiteness conditions. Further characterizations are derived from conditions on the derivatives of f arising from the study of the usual concepts of moment, moment-generating function and characteristic function in this context.
Similar content being viewed by others
References
Akhiezer, N.: The Classical Moment Problem and Some Related Questions in Analysis. Oliver and Boyd, Edinburgh (1965)
Berg, C., Christensen, J., Ressel, P.: Harmonic Analysis on Semigroups. Graduate Texts in Mathematics, 100. Springer, New York (1984)
Berg, C., Maserick, P.: Exponentially bounded positive definite functions. Ill. J. Math. 28(1), 162–179 (1984)
Bernstein, S.: Sur les fonctions absolument monotones. Acta Math. 52, 1–66 (1929)
Bisgaard, T., Sasvári, Z.: Characteristic Functions and Moment Sequences. Nova Science, New York (2000)
Buescu, J., Paixão, A.: A linear algebraic approach to holomorphic reproducing kernels in \({\mathbb{C}}^n\). Linear Algebra Appl. 412(2–3), 270–290 (2006)
Buescu, J., Paixão, A.: Positive definite matrices and differentiable reproducing kernel inequalities. J. Math. Anal. Appl. 320(1), 279–292 (2006)
Buescu, J., Paixão, A.: On differentiability and analyticity of positive definite functions. J. Math. Anal. Appl. 375(1), 336–341 (2011)
Buescu, J., Paixão, A.: Real and complex variable positive definite functions. São Paulo J. Math. Sci. 6(2), 155–169 (2012)
Buescu, J., Paixão, A.: Complex variable positive definite functions. Complex Anal. Oper. Theory 8(4), 937–954 (2014)
Cramér, H.: Mathematical Methods of Statistics. Reprint of the 1946 original. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1999)
Devinatz, A.: Integral representations of positive definite functions. Trans. Am. Math. Soc. 74, 56–77 (1953)
Devinatz, A.: Integral representations of positive definite functions II. Trans. Am. Math. Soc. 77, 455–480 (1954)
Ehm, W., Genton, M., Gneiting, T.: Stationary covariances associated with exponentially convex functions. Bernoulli 9(4), 607–615 (2003)
Graczyk, P., Loeb, J.: Bochner and Schoenberg theorems on symmetric spaces in the complex case. Bull. Soc. Math. France 122(4), 571–590 (1994)
Hamburger, H.: Bemerkungen zu einer Fragestellung des Herrn Pólya. Math. Z. 7, 302–322 (1920)
Loeb, J., Youssfi, E.: Fonctions holomorphes définies positives sur les domaines tubes. C. R. Math. Acad. Sci. Paris 343(2), 87–90 (2006)
Lukacs, E.: Characteristic Functions, 2nd edn. Griffin, London (1970)
Mathias, M.: Über positive Fourier-integrale. Math. Z. 16(1), 103–125 (1923)
Stewart, J.: Positive definite functions and generalizations, an historical survey. Rocky Mt. J. Math. 6(3), 409–434 (1976)
Youssfi, E.: Harmonic analysis on conelike bodies and holomorphic functions on tube domains. J. Funct. Anal. 155(2), 381–435 (1998)
Whittaker, E., Watson, G.: A Course in Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1996)
Widder, D.: Necessary and sufficient conditions for the representation of a function by a doubly infinite Laplace integral. Bull. Am. Math. Soc. 40(4), 321–326 (1934)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Igor Klep.
The first author acknowledges partial support by Fundação para a Ciência e Tecnologia, UID/MAT/04561/2013.
Rights and permissions
About this article
Cite this article
Buescu, J., Paixão, A.C. & Symeonides, A. Complex Positive Definite Functions on Strips. Complex Anal. Oper. Theory 11, 627–649 (2017). https://doi.org/10.1007/s11785-015-0527-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11785-015-0527-y
Keywords
- Positive definite functions
- Fourier–Laplace transform
- Complex analysis
- Characteristic functions
- Moment-generating functions
- Exponentially convex functions
- Meromorphic functions
- Zeta function