Skip to main content
Log in

Complex Positive Definite Functions on Strips

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

We characterize a holomorphic positive definite function f defined on a horizontal strip of the complex plane as the Fourier–Laplace transform of a unique exponentially finite measure on \({\mathbb R}\). With this characterization, the classical theorems of Bochner on positive definite functions and of Widder on exponentially convex functions become respectively the real and imaginary sections of the corresponding complex integral representation. We provide minimal holomorphy assumptions for this characterization and derive conclusions for meromorphic functions under minimal positive definiteness conditions. Further characterizations are derived from conditions on the derivatives of f arising from the study of the usual concepts of moment, moment-generating function and characteristic function in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhiezer, N.: The Classical Moment Problem and Some Related Questions in Analysis. Oliver and Boyd, Edinburgh (1965)

    MATH  Google Scholar 

  2. Berg, C., Christensen, J., Ressel, P.: Harmonic Analysis on Semigroups. Graduate Texts in Mathematics, 100. Springer, New York (1984)

  3. Berg, C., Maserick, P.: Exponentially bounded positive definite functions. Ill. J. Math. 28(1), 162–179 (1984)

    MathSciNet  MATH  Google Scholar 

  4. Bernstein, S.: Sur les fonctions absolument monotones. Acta Math. 52, 1–66 (1929)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bisgaard, T., Sasvári, Z.: Characteristic Functions and Moment Sequences. Nova Science, New York (2000)

    MATH  Google Scholar 

  6. Buescu, J., Paixão, A.: A linear algebraic approach to holomorphic reproducing kernels in \({\mathbb{C}}^n\). Linear Algebra Appl. 412(2–3), 270–290 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buescu, J., Paixão, A.: Positive definite matrices and differentiable reproducing kernel inequalities. J. Math. Anal. Appl. 320(1), 279–292 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buescu, J., Paixão, A.: On differentiability and analyticity of positive definite functions. J. Math. Anal. Appl. 375(1), 336–341 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buescu, J., Paixão, A.: Real and complex variable positive definite functions. São Paulo J. Math. Sci. 6(2), 155–169 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Buescu, J., Paixão, A.: Complex variable positive definite functions. Complex Anal. Oper. Theory 8(4), 937–954 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cramér, H.: Mathematical Methods of Statistics. Reprint of the 1946 original. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1999)

  12. Devinatz, A.: Integral representations of positive definite functions. Trans. Am. Math. Soc. 74, 56–77 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  13. Devinatz, A.: Integral representations of positive definite functions II. Trans. Am. Math. Soc. 77, 455–480 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ehm, W., Genton, M., Gneiting, T.: Stationary covariances associated with exponentially convex functions. Bernoulli 9(4), 607–615 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Graczyk, P., Loeb, J.: Bochner and Schoenberg theorems on symmetric spaces in the complex case. Bull. Soc. Math. France 122(4), 571–590 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hamburger, H.: Bemerkungen zu einer Fragestellung des Herrn Pólya. Math. Z. 7, 302–322 (1920)

    Article  MathSciNet  MATH  Google Scholar 

  17. Loeb, J., Youssfi, E.: Fonctions holomorphes définies positives sur les domaines tubes. C. R. Math. Acad. Sci. Paris 343(2), 87–90 (2006)

    Article  MathSciNet  Google Scholar 

  18. Lukacs, E.: Characteristic Functions, 2nd edn. Griffin, London (1970)

    MATH  Google Scholar 

  19. Mathias, M.: Über positive Fourier-integrale. Math. Z. 16(1), 103–125 (1923)

    Article  MathSciNet  MATH  Google Scholar 

  20. Stewart, J.: Positive definite functions and generalizations, an historical survey. Rocky Mt. J. Math. 6(3), 409–434 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  21. Youssfi, E.: Harmonic analysis on conelike bodies and holomorphic functions on tube domains. J. Funct. Anal. 155(2), 381–435 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Whittaker, E., Watson, G.: A Course in Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  23. Widder, D.: Necessary and sufficient conditions for the representation of a function by a doubly infinite Laplace integral. Bull. Am. Math. Soc. 40(4), 321–326 (1934)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Buescu.

Additional information

Communicated by Igor Klep.

The first author acknowledges partial support by Fundação para a Ciência e Tecnologia, UID/MAT/04561/2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buescu, J., Paixão, A.C. & Symeonides, A. Complex Positive Definite Functions on Strips. Complex Anal. Oper. Theory 11, 627–649 (2017). https://doi.org/10.1007/s11785-015-0527-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-015-0527-y

Keywords

Mathematics Subject Classification

Navigation