Skip to main content
Log in

The Cauchy–Kowalewski Theorem in the Space of Pseudo Q-holomorphic Functions

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

In this work, we prove the Cauchy–Kowalewski theorem for the initial-value problem

$$\begin{aligned} \frac{\partial w}{\partial t}= & {} Lw \\ w(0,z)= & {} w_{0}(z) \end{aligned}$$

where

$$\begin{aligned} Lw:= & {} E_{0}(t,z)\frac{\partial }{\partial \overline{\phi }}\left( \frac{ d_{E}w}{dz}\right) +F_{0}(t,z)\overline{\left( \frac{\partial }{\partial \overline{\phi }}\left( \frac{d_{E}w}{dz}\right) \right) }+C_{0}(t,z)\frac{ d_{E}w}{dz} \\&+G_{0}(t,z)\overline{\left( \frac{d_{E}w}{dz}\right) } +A_{0}(t,z)w+B_{0}(t,z)\overline{w}+D_{0}(t,z) \end{aligned}$$

in the space \(P_{D}\left( E\right) \) of Pseudo Q-holomorphic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Begehr, H., Gilbert, R.P.: Pseudohyperanalytic functions. Complex Var. Theory Appl. 9, 343-357 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bers, L.: Theory of Pseudo-Analytic Functions, Lecture Notes. Institute for Mathematics and Mechanics, New York University, New York (1953)

    MATH  Google Scholar 

  3. Bojarskiĭ, B.V.: Theory of generalized analytic vectors. Ann. Polon. Math. 17, 281-320 (1966). (in Russian)

    MathSciNet  Google Scholar 

  4. Çağlıyan, M., Hızlıyel, S.: Some relations among the classes of pseudo $Q$-holomorphic functions. Complex Var. Elliptic Equ. 58, 471-482 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Douglis, A.: A function theoretic approach to elliptic systems of equations in two variables. Commun. Pure Appl. Math. 6, 259-289 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gilbert, R.P., Buchanan, J.L.: First Order Elliptic Systems. A Function Theoretic Approach. Academic Press, Orlando (1983)

    MATH  Google Scholar 

  7. Gilbert, R.P., Hile, G.N.: Generalized hypercomplex function theory. Trans. Am. Math. Soc. 195, 1-29 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hızlıyel, S., Çağlıyan, M.: Generalized $Q$-holomorphic functions. Complex Var. Theory Appl. 49, 427-447 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Hızlıyel, S., Çağlıyan, M.: Pseudo $Q$-holomorphic functions. Complex Var. Theory Appl. 49, 941-955 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Hile, G.N.: Function theory for generalized Beltrami systems. Comtemp. Math. 11, 101-125 (1982)

    MATH  Google Scholar 

  11. Treves, F.: Basic Linear Partial Differantial Equations. Academic Press, New York, San Francisco (1975)

    MATH  Google Scholar 

  12. Tutschke, W.: Initial Value Problems in Classes of Generalized Analytic Functions. Springer, New York, Paris (1988)

    Google Scholar 

  13. Tutschke, W., Withalm, C.: The Cauchy-Kovalevska theorem for pseudoholomorphic functions in the sense of L. Bers. Complex Var. Theory Appl. 2, 389-393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Vekua, I.N.: Generalized Analytic Functions. Pergamon Press, London (1962)

    MATH  Google Scholar 

  15. Yüksel, U., Celebi, A.O.: The Cauchy-Kowalewski theorem in the space of pseudoholomorphic functions. Complex Var. Theory Appl. 29, 305-311 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sezayi Hızlıyel.

Additional information

Communicated by Wolfgang Sproessig.

This work was supported by the Commission of Scientific Research Projects of Uludağ University, Project Number KUAP(F)-2013/84.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hızlıyel, S., Sağlam Özkan, Y. The Cauchy–Kowalewski Theorem in the Space of Pseudo Q-holomorphic Functions. Complex Anal. Oper. Theory 10, 953–963 (2016). https://doi.org/10.1007/s11785-015-0509-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-015-0509-0

Keywords

Mathematics Subject Classification

Navigation