Skip to main content
Log in

Faà di Bruno’s Formula and Modular Forms

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

We show that Faà di Bruno’s formula can play important roles in modular forms theory and in the study of differential operators of the form \( \displaystyle \left( a(x)\frac{d}{dx} \right) ^n\). We also emphasize the importance of the fundamental forms \(\displaystyle y_k= \Delta ^{-\frac{k}{12}}, \Delta \) is the discriminant function, making a link between some aspects of differential Galois theory and modular forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Appell, P.: Mémoire sur les équations différentielles linéaires. Annales Scientifiques de l’ENS, \(2^{e}\) série, tome 10, 391–424 (1881)

  2. Berndt, B.C., Chan, H.H., Huang, S.S.: Incomplete Elliptic Integrals in Ramanujan’s Lost Notebook in q-series from a Contemporary Perspective, pp. 79–126. In: Ismail, M.E.H., Stanton, D. (eds.) Amer. Math. Soc., USA (2000)

    Google Scholar 

  3. Bol, G.: Invarianten linearer differentialgleichungen. Abh. Math. Sem. Univ. Hamburger Univ. 16, 1–28 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bronstein, M., Mulders, T., Weil, J-A.: On symmetric powers of differential operators. In: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation. ACM Press, New York (1997)

  5. Fricke, R., Klein, F.: Vorlesungen über die theorie der elliptischen modulfunctionen. Teubner, Leipzig (1890)

    MATH  Google Scholar 

  6. Gustafsson, G., Peetre, J.: Notes on projective structures on complex manifolds. Nagoya Math. J. 116, 63–88 (1989)

    MathSciNet  MATH  Google Scholar 

  7. Hardy, G.H.: On two theorems of F. Carlson and S. Wigert. Acta Mathematica 42, 327–339 (1920)

    Article  Google Scholar 

  8. Hurwitz, A.: Über die Differentsialglechungen dritter ordnung, welchen die Formen mit linearen transformationen in sich genügen. Math. Ann. 36, 97–112 (1848). (Ges. math. Werke, Bd. 2, 171–191)

  9. Johnson, W.P.: The curious history of Faà di Bruno’s formula. Am. Math. Monthly 109, 217–234 (2002)

    Article  MATH  Google Scholar 

  10. Lang, S.: Introduction to Modular Forms. A Series of Comprehensive Studies in Mathematics, vol. 222. Springer, Berlin (1976)

  11. Van Der Pol, B.: On a non-linear partial differential equation satisfied by the logarithm of the jacobian theta-functions, with arithmetical applications; I, II. Nederl. Akad. Wetensch. Proc. Ser. A 54, 261–272, 272–284 (1981). (Indag. Math. 13, 1951)

  12. Van der Put, M., Singer, M.F.: Galois Theory of Linear Differential Equations Grundlehren der Mathematischen Wissenschaften, vol. 328. Springer, Berlin (2003)

    Google Scholar 

  13. Rankin, R.A.: The construction of automorphic forms from the derivatives of given forms. J. Indian Math. Soc. 20, 103–116 (1956)

    MathSciNet  MATH  Google Scholar 

  14. Rankin, R.A.: The construction of automorphic forms from the derivatives of given forms. Mich. Math. J. 4, 181–186 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rademacher, H.: Topics in Analytic Number Theory. Die Grundlehren der Math. Wissenschaften, Band 169. Springer, Berlin (1973)

  16. Resnikoff, H.L.: On differential operators and automorphic forms. Trans. Am. Math. Soc. 124, 334–346 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sebbar, Ab: Sebbar, Ah: Eisenstein series and modular differential equations. Can. Math. Bull. 55(2), 400–409 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Serre, J.P.: Cours d’Arithmétique. Presses Universitaires de France, France (1970)

    MATH  Google Scholar 

  19. Singer, M.F.: Solving homogeneous linear differential equations in terms of second order linear differential equations. Am. J. Math. 107, 663–696 (1985)

    Article  MATH  Google Scholar 

  20. Touchard, J., Van Der Pol, B.: Equations différentielles linéaires vérifiées par certaines fonctions modulaires elliptiques. Nederl. Akad. Wetensch. Proc. Ser. A. 59=. Indag. Math. 18, 166–169 (1956)

    Article  Google Scholar 

  21. Wilczynski, E.J.: Projective Differential Geometry of Curves and Ruled Surfaces. Teubner (1906). (reprinted by Chelsea Publ. Co.)

  22. Zagier, D.: Elliptic modular forms and their applications. In: The 1-2-3 of Modular Forms. Universitext. Springer, Berlin, pp. 1–103 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Sebbar.

Additional information

Communicated by Daniel Aron Alpay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meguedmi, D., Sebbar, A. Faà di Bruno’s Formula and Modular Forms. Complex Anal. Oper. Theory 10, 409–435 (2016). https://doi.org/10.1007/s11785-015-0494-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-015-0494-3

Keywords

Navigation