Skip to main content
Log in

Characterizations of Mono-Components: the Blaschke and Starlike Types

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

Since the last decade, motivated by attempts of positive frequency decomposition of signals, complex periodic functions \(s(e^{it})=\rho (t)e^{i\theta (t)}\) satisfying the conditions

$$\begin{aligned} {H}(\rho (t)\cos \theta (t))=\rho (t)\sin \theta (t),\quad \rho (t)\ge 0,\ \theta '(t)\ge 0,\;a.e., \end{aligned}$$

have been sought, where H is the circular Hilbert transform and the phase derivative \(\theta '(t)\) is suitably defined and interpreted as instantaneous frequency of the signal \(\rho (t)\cos \theta (t)\). Functions satisfying the above conditions are called mono-components. Mono-components have been found to form a large pool and used to decompose and analyze signals. This note in a great extent concludes the study of seeking for mono-components through characterizing two classes of mono-components of which one is phrased as the Blaschke type and the other the starlike type. The Blaschke type mono-components are of the form \(\rho (t)\cos \theta (t)\), where \(\rho (t)\) is a real-valued (generalized) amplitude functions and \(e^{i\theta (t)}\) is the boundary limit of a finite or infinite Blaschke product. For the starlike type mono-components, we assume the condition \(\int _{0}^{2\pi }\theta '(t)dt=n\pi \), where n is a positive integer. It shows that such class of mono-components is identical with the class consisting of products between p-starlike and boundary \((n-2p) \)-starlike functions. The results of this paper explore connections between harmonic analysis, complex analysis, and signal analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kumaresan, R., Rao, A.: Model-based approach to envelope and positive instantaneous frequency estimation of signals with speech applications. J. Acoust. Soc. Am. 105(3), 1912–1924 (1999)

    Article  Google Scholar 

  2. Xia, X.G., Cohen, L.: On analytic signals with nonnegative instantaneous frequency. IEEE Int. Conf. Acoust. Speech Signal Process. 3, 1329–1332 (1999)

    Google Scholar 

  3. Doroslovac̆ki, M.I.: On nontrival analytic signals with positive instantaneous frequency. Signal Process. 83(3), 655–658 (2003)

    Article  Google Scholar 

  4. Qian, T., Wang, Y.B., Dang, P.: Adaptive decomposition into mono-components. Adv. Adapt. Data Anal. 01(04), 703–709 (2009)

    Article  MathSciNet  Google Scholar 

  5. Qian, T., Wang, R., Xu, Y., Zhang, H.: Orthonormal bases with nonlinear phases. Adv. Comput. Math. 33(1), 75–95 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Qian, T., Wang, Y.B.: Adaptive decomposition into basic signals of non-negative instantaneous frequencies—a variation and realization of greedy algorithm. Adv. Comput. Math. 34(3), 279–293 (2011)

    Article  MathSciNet  Google Scholar 

  7. Tan, L.H., Yang, L.H., Huang, D.R.: The structure of instantaneous frequencies of periodic analytic signals. Sci. China Math. 53(2), 347–355 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Qian, T.: Characterization of boundary values of functions in Hardy spaces with application in signal analysis. J. Integral Equ. Appl. 17(2), 159–198 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Qian, T.: Mono-components for decomposition of signals. Math. Method Appl. Sci. 29, 1187–1198 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Qian, T.: Phase derivatives of Nevanlinna functions and applications. Math. Method Appl. Sci. 32, 253–263 (2009)

    Article  Google Scholar 

  11. Picinbono, B.: On instantaneous amplitude and phase of signals. IEEE Trans. Signal Process. 45(3), 552–560 (1997)

    Article  Google Scholar 

  12. Xu, Y.S., Yan, D.Y.: The Bedrosian identity fot the Hilbert transform of product functions. Proc. Am. Math. Soc. 134, 2719–2728 (2006)

    Article  MATH  Google Scholar 

  13. Yu, B., Zhang, H.Z.: The Bedrosian identity and homoge- neous semi-convolution equations. J. Integral Equ. Appl. 20(4), 527–568 (2008)

    Article  Google Scholar 

  14. Tan, L.H., Yang, L.H., Huang, D.R.: Construction of periodic analytic signals satisfying the circular Bedrosian identity. IMA J. Appl. Math. 75, 246–256 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bultheel, A.: Orthogonal Rational Functions. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  16. Cima, J., Ross, W.: The Backward Shift on the Hardy Space. American Mathematical Society, Providence (2000)

    Book  MATH  Google Scholar 

  17. Garnett, J.B.: Bounded Analytic Function. Academic Press, New York (1987)

    Google Scholar 

  18. Shen, X.C.: Complex Approximation. Science Press, Beijing (1991). (Chinese Version)

    MATH  Google Scholar 

  19. Qian, T., Tan, L.H.: Backard shift invariant subspace with applications to band preserving and phase retrieval problem. Math. Methods Appl. Sci (2015). doi:10.1002/mma.3591

  20. Qian, T., Chen, Q.H., Tan, L.H.: Rational orthogonal systems are Schauder bases. Complex Var. Elliptic Equ. 59(6), 841–846 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hummel, J.A.: Multivalent starlike function. J. d’Analyse Math. 18, 133–160 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  22. Robertson, M.S.: Univalent functions starlike with respect to a boundary point. J. Math. Anal. Appl. 81, 327–345 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lyzzaik, A.: On a conjecture of M.S. Robertson. Proc. Am. Math. Soc. 91, 108–110 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lecko, A.: On the class of functions starlike with respect to a boundary point. J. Math. Anal. Appl. 261, 649–664 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lecko, A., Lyzzaik, A.: A note on univalent functions starlike with respect to a boundary point. J. Math. Anal. Appl. 282, 846–851 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihui Tan.

Additional information

Communicated by Irene Sabadini.

T. Qian supported by Research Grant of University of Macau MYRG116(Y1-L3)-FST13-QT, Macao Science and Technology Fund FDCT/098/2012/A3.

L. Tan supported by NSFC (61471132) and Cultivation Program for Outstanding Young College Teachers (Yq2014060) of Guangdong Province.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, T., Tan, L. Characterizations of Mono-Components: the Blaschke and Starlike Types. Complex Anal. Oper. Theory 12, 1383–1399 (2018). https://doi.org/10.1007/s11785-015-0491-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-015-0491-6

Keywords

Navigation