Complex Analysis and Operator Theory

, Volume 11, Issue 3, pp 675–705 | Cite as

Rank of Finite Rudin Type Backward Shift Invariant Subspaces Over the Bidisk

Article
  • 95 Downloads

Abstract

The paper studies the rank of finite Rudin type backward shift invariant subspaces over the bidisk.

Keywords

Hardy space over the bidisk Rank of backward shift invariant subspace Sequence of inner functions 

Mathematics Subject Classification

Primary 47A15 32A35 Secondary 47B35 

Notes

Acknowledgments

The authors would like to thank the referee for carefully reading the manuscript and giving the authors some variable suggestions.

References

  1. 1.
    Ahern, P., Clark, D.: Invariant subspaces and analytic continuation in several variables. J. Math. Mech. 19, 963–969 (1969)MathSciNetMATHGoogle Scholar
  2. 2.
    Bercovici, H.: Operator theory and arithmetric in \(H^{\infty }\), mathematical surveys and monogaraphs, vol. 26. American Mathematical Society, Providence (1988)Google Scholar
  3. 3.
    Beurling, A.: On two problems concerning linear transformations in Hilbert space. Acta Math. 81, 239–255 (1949)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Hoffman, K.: Banach spaces of analytic functions. Prentice Hall, Englewood Cliffs (1962)MATHGoogle Scholar
  5. 5.
    Izuchi, K.J., Izuchi, K.H., Izuchi, Y.: Ranks of invariant subspaces of the Hardy space over the bidisk. J. Reine Angew. Math. 659, 67–100 (2011)MathSciNetMATHGoogle Scholar
  6. 6.
    Izuchi, K.J., Izuchi, K.H., Izuchi, Y.: Blaschke products and the rank of backward shift invariant subspaces over the bidisk. J. Funct. Anal. 261, 1457–1468 (2011)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Izuchi, K.J., Izuchi, K.H., Izuchi, Y.: Mutually prime sequences of inner functions and the ranks of subspaces over the bidisk. Arch. Math. 98, 535–543 (2012)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Izuchi, K.J., Izuchi, K.H., Izuchi, Y.: Ranks of backward shift invariant subspaces of the Hardy space over the bidisk. Math. Z. 274, 885–903 (2013)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Nikol’skiĭ, N.K.: Treatise on the shift operator. Springer, New York (1986)CrossRefGoogle Scholar
  10. 10.
    Rudin, W.: Function theory in polydiscs. Benjamin, New York (1969)MATHGoogle Scholar
  11. 11.
    Seto, M.: Infinite sequences of inner functions and submodules in \(H^2(D^2)\). J. Oper. Theory 61, 75–86 (2009)MathSciNetMATHGoogle Scholar
  12. 12.
    Seto, M., Yang, R.: Inner sequence based invariant subspaces in \(H^2(D^2)\). Proc. Amer. Math. Soc. 135, 2519–2526 (2007)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Zhu, K.: Operator theory in function spaces. American Mathematical Society, Providence (2007)CrossRefMATHGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Department of MathematicsNiigata UniversityNiigataJapan
  2. 2.Department of Mathematics, Faculty of EducationYamaguchi UniversityYamaguchiJapan
  3. 3.NiigataJapan

Personalised recommendations