Skip to main content
Log in

Kravchuk Polynomials and Induced/Reduced Operators on Clifford Algebras

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

Kravchuk polynomials arise as orthogonal polynomials with respect to the binomial distribution and have numerous applications in harmonic analysis, statistics, coding theory, and quantum probability. The relationship between Kravchuk polynomials and Clifford algebras is multifaceted. In this paper, Kravchuk polynomials are discovered as traces of conjugation operators in Clifford algebras, and appear in Clifford Berezin integrals of Clifford polynomials. Regarding Kravchuk matrices as linear operators on a vector space \(V\), the action induced on the Clifford algebra over \(V\) is equivalent to blade conjugation, i.e., reflections across sets of orthogonal hyperplanes. Such operators also have a natural interpretation in terms of raising and lowering operators on the algebra. On the other hand, beginning with particular linear operators on the Clifford algebra \(\mathcal {C}\ell _Q(V)\), one obtains Kravchuk matrices as operators on the paravector space \(V_*\) through a process of operator grade-reduction. Symmetric Kravchuk matrices are recovered as representations of grade-reductions of maps induced by negative-definite quadratic forms on \(V\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Atakishiyev, N.M., Wolf, K.B.: Fractional Fourier–Kravchuk transform. J. Opt. Soc. Am. A 147, 1467–1477 (1997)

    Article  MathSciNet  Google Scholar 

  2. Batard, T., Berthier, M., Saint-Jean, C.: Clifford–Fourier transform for color image processing. In: Bayro-Corrochano, E., Scheuermann, G. (eds.) Geometric Algebra Computing, pp. 135–162. Springer, London (2010). doi:10.1007/978-1-84996-108-0_8

    Chapter  Google Scholar 

  3. Berezin, F.A.: Introduction to Superanalysis. D. Reidel Publishing Co., Dordrecht (1987)

    Book  MATH  Google Scholar 

  4. Delsarte, P.: Bounds for restricted codes, by linear programming. Philips Res. Rep. 27, 272–289 (1972)

    MATH  MathSciNet  Google Scholar 

  5. Delsarte, P.: Four fundamental parameters of a code and their combinatorial significance. Inf. Control 23, 407–438 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  6. Delsarte, P.: An algebraic approach to the association schemes of coding theory. Philips research reports supplements, No. 10, N.V. Philips’ Gloeilampenfabrieken, Eindhoven, Netherlands, (1973)

  7. Dunkl, C.F.: A Krawtchouk polynomial addition theorem and wreath products of symmetric groups. Indiana Univ. Math. J. 25, 335–358 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dunkl, C.F., Ramirez, D.F.: Krawtchouk polynomials and the symmetrization of hypergraphs. SIAM J. Math. Anal. 5, 351–366 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  9. Feinsilver, P., Fitzgerald, R.: The spectrum of symmetric Kravchuk matrices. Linear Algebra Appl. 235, 121–139 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Feinsilver, P., Franz, U., Schott, R.: Duality and multiplicative processes on quantum groups. J. Theor. Probab. 10, 795–818 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Feinsilver, P., Kocik, J.: Krawtchouk polynomials and Krawtchouk matrices. In: Baeza-Yates, R., Glaz, J., Gzyl, H., Hüsler, J., Palacios, J.L. (eds.) Recent Advances in Applied Probability, pp. 115–141. Springer, Berlin (2005)

    Chapter  Google Scholar 

  12. Feinsilver, P., Kocik, J.: Krawtchouk matrices from classical and quantum random walks. Contemp. Math. 287, 83–96 (2001)

    Article  MathSciNet  Google Scholar 

  13. Feinsilver, P., Schott, R.: On Krawtchouk transforms, intelligent computer mathematics. In: Proceedings of the 10th Internationl Conference AISC 2010, LNAI 6167, 6475

  14. Feinsilver, P., Schott, R.: Krawtchouk Polynomials and Finite Probability Theory, Probability Measures on Groups X. Plenum, New York (1991)

    Google Scholar 

  15. Gudder, S.: Quantum Probability. Academic Press, Boston (1988)

    MATH  Google Scholar 

  16. Koornwinder, T.: Krawtchouk polynomials, a unification of two different group theoretic interpretations. SIAM J. Math. Anal. 13, 1011–1023 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  17. Levenstein, V.I.: Krawtchouk polynomials and universal bounds for codes and design in Hamming spaces. IEEE Trans. Inf. Theory 41, 1303–1321 (1995)

    Article  Google Scholar 

  18. Lounesto, P., Latvamaa, E.: Conformal transformations and Clifford algebras. Proc. Am. Math. Soc. 79, 533–538 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  19. MacWilliams, F.J., Sloane, N.J.A.: Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  20. Meyer, P.A.: Quantum Probability for Probabilists, Lecture Notes in Mathematics 1538. Springer, Berlin (1995)

  21. Parthasarathy, K.R.: An Introduction to Quantum Stochastic Calculus. Birkhäuser Verlag, Basel (1992)

    Book  MATH  Google Scholar 

  22. Schott, R., Staples, G.S.: On the role of blade factorization in constructing Clifford Appell systems, Prépublications de l’Institut Élie Cartan no. 2011/024 (2011)

  23. Schott, R., Staples, G.S.: Operator calculus and Appell systems on Clifford algebras. Int. J. Pure Appl. Math. 31, 427–446 (2006)

    MATH  MathSciNet  Google Scholar 

  24. Schott, R., Staples, G.S.: Operator homology and cohomology in Clifford algebras. Cubo A Math J 12, 299–326 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Schott, R., Staples, G.S.: Operator calculus and invertible Clifford Appell systems: theory and application to the n-particle fermion algebra, Infin. Dimens. Anal. Quantum Probab. Relat. Topics 16, 1350007 (2013). doi:10.1142/S0219025713500070

  26. Shale, D., Stinespring, W.F.: States of the Clifford algebra. Ann. Math. 80, 365–381 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  27. Szëgo, G.: Orthogonal Polynomials, Am. Math. Soc. Providence (1955)

  28. Yap, P.-T., Paramesran, R.: Image analysis by Krawtchouk moments. IEEE Trans. Image Process. 12, 1367–1377 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author thanks Philip Feinsilver for a number of thought-provoking discussions over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Stacey Staples.

Additional information

Communicated by Marek Bozejko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Staples, G.S. Kravchuk Polynomials and Induced/Reduced Operators on Clifford Algebras. Complex Anal. Oper. Theory 9, 445–478 (2015). https://doi.org/10.1007/s11785-014-0377-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-014-0377-z

Keywords

Mathematics Subject Classification

Navigation