Abstract
A pair \((P, Q)\) of orthogonal projections in a Hilbert space \( \mathcal{H} \) is called a Fredholm pair if
is a Fredholm operator. Let \( \mathcal{F} \) be the set of all Fredholm pairs. A pair is called compact if \(P-Q\) is compact. Let \( \mathcal{C} \) be the set of all compact pairs. Clearly \( \mathcal{C} \subset \mathcal{F} \) properly. In this paper it is shown that both sets are differentiable manifolds, whose connected components are parametrized by the Fredholm index. In the process, pairs \(P, Q\) that can be joined by a geodesic (or equivalently, a minimal geodesic) of the Grassmannian of \( \mathcal{H} \) are characterized: this happens if and only if
Similar content being viewed by others
References
Amrein, W.O., Sinha, K.B.: On pairs of projections in a Hilbert space. Linear Algebra Appl. 208(209), 425–435 (1994)
Andruchow, E., Corach, G., Stojanoff, D.: Projective spaces of a \(C^\ast \)-algebra. Integral Equ. Oper. Theory 37(2), 143–168 (2000)
Andruchow, E., Larotonda, G.: The rectifiable distance in the unitary Fredholm group. Studia Math. 196(2), 151–178 (2010)
Atkin, C.J.: The Finsler geometry of groups of isometries of Hilbert space. J. Aust. Math. Soc. Ser. A 42(2), 196–222 (1987)
Avron, J., Seiler, R., Simon, B.: The index of a pair of projections. J. Funct. Anal. 120(1), 220–237 (1994)
Böttcher, A., Spitkovsky, I.M.: A gentle guide to the basics of two projections theory. Linear Algebra Appl. 432(6), 1412–1459 (2010)
Buckholtz, D.: Inverting the difference of Hilbert space projections. Am. Math. Monthly 104(1), 60–61 (1997)
Corach, G., Porta, H., Recht, L.: The geometry of spaces of projections in \(C^*\)-algebras. Adv. Math. 101(1), 59–77 (1993)
Davis, C.: Separation of two linear subspaces. Acta Sci. Math. Szeged 19, 172–187 (1958)
de la Harpe, P.: Classical Banach-Lie algebras and Banach-Lie groups of operators in Hilbert space. In: Lecture Notes in Mathematics, vol. 285. Springer, Berlin (1972)
Dixmier, J.: Position relative de deux variétés linaires fermées dans un espace de Hilbert. (French) Revue Sci. 86, 387–399 (1948)
Halmos, P.R.: Two subspaces. Trans. Am. Math. Soc. 144, 381–389 (1969)
Kato, T.: Perturbation theory for linear operators. Reprint of the 1980 edition. In: Classics in Mathematics. Springer, Berlin (1995)
Porta, H., Recht, L.: Minimality of geodesics in Grassmann manifolds. Proc. Am. Math. Soc. 100(3), 464–466 (1987)
Beltita, D., Ratiu, T.S., Tumpach, A.B.: The restricted Grassmannian, Banach Lie–Poisson spaces, and coadjoint orbits. J. Funct. Anal. 247(1), 138–168 (2007)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Palle Jorgensen.
Rights and permissions
About this article
Cite this article
Andruchow, E. Pairs of Projections: Geodesics, Fredholm and Compact Pairs. Complex Anal. Oper. Theory 8, 1435–1453 (2014). https://doi.org/10.1007/s11785-013-0327-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11785-013-0327-1

