Skip to main content
Log in

Pairs of Projections: Geodesics, Fredholm and Compact Pairs

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

A pair \((P, Q)\) of orthogonal projections in a Hilbert space \( \mathcal{H} \) is called a Fredholm pair if

$$\begin{aligned} QP : R(P) \rightarrow R(Q) \end{aligned}$$

is a Fredholm operator. Let \( \mathcal{F} \) be the set of all Fredholm pairs. A pair is called compact if \(P-Q\) is compact. Let \( \mathcal{C} \) be the set of all compact pairs. Clearly \( \mathcal{C} \subset \mathcal{F} \) properly. In this paper it is shown that both sets are differentiable manifolds, whose connected components are parametrized by the Fredholm index. In the process, pairs \(P, Q\) that can be joined by a geodesic (or equivalently, a minimal geodesic) of the Grassmannian of \( \mathcal{H} \) are characterized: this happens if and only if

$$\begin{aligned} \dim (R(P)\cap N(Q))=\dim (R(Q)\cap N(P)). \end{aligned}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amrein, W.O., Sinha, K.B.: On pairs of projections in a Hilbert space. Linear Algebra Appl. 208(209), 425–435 (1994)

    Article  MathSciNet  Google Scholar 

  2. Andruchow, E., Corach, G., Stojanoff, D.: Projective spaces of a \(C^\ast \)-algebra. Integral Equ. Oper. Theory 37(2), 143–168 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andruchow, E., Larotonda, G.: The rectifiable distance in the unitary Fredholm group. Studia Math. 196(2), 151–178 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Atkin, C.J.: The Finsler geometry of groups of isometries of Hilbert space. J. Aust. Math. Soc. Ser. A 42(2), 196–222 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Avron, J., Seiler, R., Simon, B.: The index of a pair of projections. J. Funct. Anal. 120(1), 220–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Böttcher, A., Spitkovsky, I.M.: A gentle guide to the basics of two projections theory. Linear Algebra Appl. 432(6), 1412–1459 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buckholtz, D.: Inverting the difference of Hilbert space projections. Am. Math. Monthly 104(1), 60–61 (1997)

    Google Scholar 

  8. Corach, G., Porta, H., Recht, L.: The geometry of spaces of projections in \(C^*\)-algebras. Adv. Math. 101(1), 59–77 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Davis, C.: Separation of two linear subspaces. Acta Sci. Math. Szeged 19, 172–187 (1958)

    MathSciNet  MATH  Google Scholar 

  10. de la Harpe, P.: Classical Banach-Lie algebras and Banach-Lie groups of operators in Hilbert space. In: Lecture Notes in Mathematics, vol. 285. Springer, Berlin (1972)

  11. Dixmier, J.: Position relative de deux variétés linaires fermées dans un espace de Hilbert. (French) Revue Sci. 86, 387–399 (1948)

    MathSciNet  MATH  Google Scholar 

  12. Halmos, P.R.: Two subspaces. Trans. Am. Math. Soc. 144, 381–389 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kato, T.: Perturbation theory for linear operators. Reprint of the 1980 edition. In: Classics in Mathematics. Springer, Berlin (1995)

  14. Porta, H., Recht, L.: Minimality of geodesics in Grassmann manifolds. Proc. Am. Math. Soc. 100(3), 464–466 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Beltita, D., Ratiu, T.S., Tumpach, A.B.: The restricted Grassmannian, Banach Lie–Poisson spaces, and coadjoint orbits. J. Funct. Anal. 247(1), 138–168 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Andruchow.

Additional information

Communicated by Palle Jorgensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andruchow, E. Pairs of Projections: Geodesics, Fredholm and Compact Pairs. Complex Anal. Oper. Theory 8, 1435–1453 (2014). https://doi.org/10.1007/s11785-013-0327-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-013-0327-1

Keywords

Mathematics Subject Classification (2010)

Navigation