Skip to main content
Log in

\(K\)-Groups of a \(C^{*}\)-Algebra Generated by a Single Operator

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

In this paper, we compute \(K\)-groups \(\{K_{n}(C^{*}(x))\}_{n=0}^{\infty }\) of the \(C^{*}\)-subalgebra \(C^{*}(x)\) of \(B(H),\) generated by a single operator \(x,\) where \(H\) is a separable infinite dimensional Hilbert space, and \(B(H)\) is the operator algebra consisting of all (bounded linear) operators on \(H.\) These computations not only provide nice examples in \(K\)-theory, but also characterize-and-classify projections in a \(C^{*}\)-algebra generated by a single operator. The main result of this paper shows that: the \(K\)-groups of \(C^{*}(x)\) are completely characterized by those of \(C^{*}(q),\) where \(q\) is the positive-operator part of \(x\) in the polar decomposition of \(x.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cho, I.: Operators induced by graphs. Lett. Math. Phy 102(3), 323–369 (2012)

    Article  MATH  Google Scholar 

  2. Cho, I.: Graph Groupoids and Partial Isometries. LAP Publisher, Saarbrücken (2009). ISBN 978- 3-8383-1397-9

  3. Cho, I., Jorgensen, P.E.T.: Directed graphs, von Neumann Algebras, and Index. Alg. Rep. Theo. (2010). doi:10.1007/s10468-010-9233-7

    Google Scholar 

  4. Cho, I., Jorgensen, P.E.T.: $C^{*}$ -dynamical systems induced by partial isometries. Adv. Appl. Math. Sci. 1(2), 21–59 (2010)

    MathSciNet  Google Scholar 

  5. Cho, I.; Jorgensen, P.E.T.: Applications of automata and graphs: labeling-operators in Hilbert space I. ACTA Appl. Math. (2009). doi:10.1063/1.3141524

  6. Cho, I., Jorgensen, P.E.T.: $C^{*}$-subalgebras generated by partial isometries. J. Math. Phy. (2009). doi:10.1063/1.3056588

    Google Scholar 

  7. Cho, I.; Jorgensen, P.E.T.: \(C^{*}\)-subalgebras generated by a single operator in \(B(H)\). ACTA Appl. Math. 108, 625–664 (2009)

  8. Mitchener, P.D.: $C^{*}$-categories, groupoid actions, equivalent $KK$-theory, and the Baum-Connes conjecture (2005, preprint). arXiv:math.KT/0204291v1

  9. Exel, R.: A new Look at the Crossed-Product of a $C^{*}$-algebra by a Semigroup of Endomorphisms (2005, preprint)

  10. Dicks, W., Ventura, E.: The group fixed by a family of injective endomorphisms of a free group. In: Contemporary Mathematics, vol. 195. AMS, Providence (1996)

  11. Halmos, P.R.: A Hilbert space problem book. In: Grad. Texts in Math., vol. 19. Springer, Berlin (1982). ISBN: 0-387-90685-1

  12. Myasnikov, A.G.; Shapilrain, V. (eds.): Group theory, statistics and cryptography. In: Contemporary Mathematics, vol. 360. AMS, Providence (2003)

  13. Cho, I.: $K$ -Theory on groupoid $C^{*}$-algebras. Am. J. Math. Math. Sci. (2012, to appear)

  14. Cho, I.: $K$-theory induced by a single partial isometry. Opuscula Math. (2012, to appear)

  15. Scapellato, R., Lauri, J.: Topics in graph automorphisms and reconstruction. In: London Math. Soc., Student Text, vol. 54. Cambridge Univ. Press. Cambridge (2003)

  16. Gliman, R., Shpilrain, V., Myasnikov, A.G. (eds.): Computational and statistical group theory. In: Contemporary Mathematics, vol. 298. AMS, Providence (2001)

  17. Khinchin, A.I.: Mathematical foundations of information theory (translated by R. A. Silverman, and M. D. Friedman), Dover (1957). ISBN:486-60434-9

  18. Davidson, K.R.: $C^{*}$-Algebras by Example, Field Institute Monographs, vol. 6. Am. Math. Soc, Providence (1996)

    Google Scholar 

  19. Brodzki, J.: An Introduction to $K$-Theory and Cyclic Cohomology. Lecture Note Dept. of Math. U. of Exeter (1995)

  20. Atiyah, M.: $K$-Theory. Benjamin, New York (1967)

    Google Scholar 

  21. Atiyah, M.: Global theory of elliptic operator. In: Proc. Int. Symp. Funct. Anal., pp. 21–30. Univ. of Tokyo Press, Tokyo (1969)

  22. Connes, A.: Noncommutative differential geometry. Publ. Math. IHES 62, 257–360 (1985)

    Article  MathSciNet  Google Scholar 

  23. Cuntz, J.: $K$-Theory and $C^{*}$-Algebras. In: Lecture Notes in Math., vol. 1046, pp. 55–79. Springer, Berlin

  24. Cuntz, J.: K-Theory 1, 31–51 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  25. Goodwillie, T.: Derivations and the free loop space. Topol. Cyclic Cohomol. 24, 187–215 (1985)

    MathSciNet  MATH  Google Scholar 

  26. Higson, N.: A primer on $KK$-theory. Proc. Symp. Pure Math. 51, 239–284

  27. Jaffe, A., Lesniewski, A., Osterwalder, K.: Quantum $K$-theory: the Chern character. Commun. Math. Phys 118, 1–14 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Milnor, J.: Algebraic $K$-theory. In: Annals of Math. Stud., vol. 72. Princeton Univ. Press, Princeton (1971)

  29. Rosenberg, J.: $K$ and $KK$: topology and operator algebras. Proc. Symp. Pure Math 51(Part 1), 445–480 (1990)

  30. Rosenberg, J.: Algebraic $K$-theory and its applications. Grad. Text. Math., vol. 147. Springer, Berlin (1994)

  31. Swan, R.: Excision in algebraic $K$-theory. J. Pure Appl. Algebra 1, 221–252 (1972)

    Article  MathSciNet  Google Scholar 

  32. Suslin, A., Wodzicki, M.: Excision in algebraic $K$-theory. Ann. Math. 136, 51–122 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kriz, I., Sati, H.: Type $IIB$ string theory, $S$-duality, and generalized cohomology. Nucl. Phys. B 715, 639–664 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Cao, G.-F., Wang, X.-H.: $K$-groups of Toeplitz algebras on connected domains. Sci. China Series A Math 50(1), 73–80 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sheu, A.J.-L.: $K$-groups of Toeplitz algebras of Reinhardt domains. Math. Scand. 75, 280–292 (1994)

    MathSciNet  MATH  Google Scholar 

  36. Brown, L.G.: Stable isomorphism of herediatary subalgebras of $ C^{*}$-algebras. Pacific J. Math. 71(2), 335–348 (1997)

    Article  Google Scholar 

  37. Freed, D.S., Hopkins, M.J., Teleman, C.: Loop Groups and Twisted $K$-Theory I (2007, preprint). arXiv:0711.1906v1

  38. Rordam, M., Larsen, F., Lausten, N.: An Introduction to $K$-Theory for $C^{*}$-Algebras. Cambridge Univ. Press, Cambridge (2000). ISBN 0521-78334-8

    Google Scholar 

  39. Masson, T.: An Informal Introduction to the Ideas and Concepts of Noncommutative Geometry. (2006, preprint). arXiv:math-ph/0612012v3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilwoo Cho.

Additional information

Communicated by Palle Jorgensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, I. \(K\)-Groups of a \(C^{*}\)-Algebra Generated by a Single Operator. Complex Anal. Oper. Theory 8, 1405–1434 (2014). https://doi.org/10.1007/s11785-013-0285-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-013-0285-7

Keywords

Mathematics Subject Classification (2000)

Navigation