Advertisement

Complex Analysis and Operator Theory

, Volume 6, Issue 5, pp 1037–1046 | Cite as

A Generalisation of the Cauchy Integral Formula for Normal Matrices

  • Brian JefferiesEmail author
Article
  • 188 Downloads

Abstract

The Cauchy integral formula says that
$$\frac{1}{2{\pi} i} \int\limits_{C} \frac{f( z)}{z - m}\, d z = f(m)$$
if f is holomorphic in a neighbourhood U of \({m \in \mathbb{C}}\) and C is a simple Jordan curve contained in U about m. In this note, we express
$$\frac{1}{2{\pi} i} \int\limits_{C} \frac{f( z)}{\det( z I - M)}\, d z$$
as an average over the numerical range co(σ(M)) of a normal matrix M, when f is holomorphic in a neighbourhood U of the numerical range of M and C is a simple Jordan curve contained in U about the set σ(M) of eigenvalues of M. The expression is of use in determining the propagation cone of a symmetric hyperbolic system of PDE.

Keywords

Cauchy integral formula Normal matrix Weyl functional calculus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dooley A.H., Raffoul R.W.: Matrix coefficients and coadjoint orbits of compact Lie groups. Proc. Am. Math. Soc. 135, 2567–2571 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Nelson, E.: Operants: a functional calculus for non-commuting operators, In: Browder, F.E. (ed.) Functional analysis and related fields. Proceedings of a conference in honour of Professor Marshal Stone, University of Chicago, pp. 172–187. Springer, Berlin (1970)Google Scholar
  3. 3.
    Jefferies B.: The Weyl calculus for hermitian matrices. Proc. Am. Math. Soc. 124, 121–128 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Jefferies, B.: Spectral properties of noncommuting operators. Lecture notes in Mathematics, vol. 1843. Springer, Berlin (2004)Google Scholar
  5. 5.
    Raffoul R.W.: A spectral theoretic approach to the Kirillov–Duflo correspondence. Proc. Am. Math. Soc. 137, 2785–2794 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Ricker, W.J., Vaeth, M.: The Weyl calculus and commutativity of selfadjoint matrices and operators. Tuebinger Berichte zur Funktionalanalysis 11, 279–294 (2001/2002)Google Scholar
  7. 7.
    Rudin W.: Real and Complex Analysis. 2nd edn. McGraw-Hill, New York (1987)zbMATHGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.UNSWSydneyAustralia

Personalised recommendations