Complex Analysis and Operator Theory

, Volume 6, Issue 2, pp 515–527 | Cite as

Voronovskaja-Type Results in Compact Disks for Quaternion q-Bernstein Operators, q ≥ 1

  • Sorin G. GalEmail author


Attaching to a compact disk \({\overline{\mathbb{D}_{r}}}\) in the quaternion field \({\mathbb{H}}\) and to some analytic function in Weierstrass sense on \({\overline{\mathbb{D}_{r}}}\) the so-called q-Bernstein operators with q ≥ 1, Voronovskaja-type results with quantitative upper estimates are proved. As applications, the exact orders of approximation in \({\overline{\mathbb{D}_{r}}}\) for these operators, namely \({\frac{1}{n}}\) if q = 1 and \({\frac{1}{q^{n}}}\) if q > 1, are obtained. The results extend those in the case of approximation of analytic functions of a complex variable in disks by q-Bernstein operators of complex variable in Gal (Mediterr J Math 5(3):253–272, 2008) and complete the upper estimates obtained for q-Bernstein operators of quaternionic variable in Gal (Approximation by Complex Bernstein and Convolution-Type Operators, 2009; Adv Appl Clifford Alg, doi: 10.1007/s00006-011-0310-8, 2011).


Quaternion q-Bernstein operators of quaternionic variable Voronovskaja-type results on disks Exact order of approximation Analytic functions in Weierstrass sense 

Mathematics Subject Classification (2000)

Primary 30G35 Secondary 30E10 41A25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fueter R.: Die Funktionentheorie der Differentialgleichungen Δu = 0 und ΔΔu = 0 mit vier reellen Variablen. Comm. Math. Helv. 7, 307–330 (1935)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Fueter R.: Über die analytische Drastellung der regulären Funktionen einer Quaternionenvariablen. Comment. Math. Helv. 8, 371–378 (1936)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Gal S.G.: Approximation by Complex Bernstein and Convolution-Type Operators. World Scientific Publ. Co, Singapore (2009)zbMATHCrossRefGoogle Scholar
  4. 4.
    Gal, S.G.: Approximation by quaternion q-Bernstein polynomials, q > 1. Adv. Appl. Clifford Alg (2011). doi: 10.1007/s00006-011-0310-8
  5. 5.
    Gal S.G.: Voronovskaja’s theorem and iterations for complex Bernstein polynomials in compact disks. Mediterr. J. Math. 5(3), 253–272 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Gentili, G., Stoppato, C.: Power series and analyticity over the quaternions. Math. Ann. (2010). doi: 10.1007/s00208-010-0631-2
  7. 7.
    Gentili G., Struppa D.C.: A new theory of regular functions of a quaternionic variable. Adv. Math. 216, 279–301 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Mejlihzon A.Z.: On the notion of monogenic quaternions. Dokl. Akad. Nauk SSSR 59, 431–434 (1948) (in Russian)Google Scholar
  9. 9.
    Moisil, Gr.C.:Sur les quaternions monogènes. Bull. Sci. Math. (Paris). LV, 168–174 (1931)Google Scholar
  10. 10.
    Ostrovska S.: q-Bernstein polynomials and their iterates. J. Approx. Theory 123, 232–255 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Wang H., Wu X.Z.: Saturation of convergence for q-Bernstein polynomials in the case q ≥ 1. J. Math. Anal. Appl. 337, 744–750 (2008)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of OradeaOradeaRomania

Personalised recommendations