Advertisement

Complex Analysis and Operator Theory

, Volume 6, Issue 5, pp 987–1010 | Cite as

Phase Derivative of Monogenic Signals in Higher Dimensional Spaces

  • Yan YangEmail author
  • Tao Qian
  • Frank Sommen
Article

Abstract

In the Clifford algebra setting of a Euclidean space on the boundary of a domain it is natural to define a monogenic (analytic) signal to be the boundary value of a monogenic (analytic) function inside the domain. The question is how to define a canonical phase and, correspondingly, a phase derivative. In this paper we give an answer to these questions in the unit ball and in the upper-half space. Among the possible candidates of phases and phase derivatives we decided that the right ones are those that give rise to, as in the one dimensional signal case, the equal relations between the mean of the Fourier frequency and the mean of the phase derivative, and the positivity of the phase derivative of the shifted Cauchy kernel.

Keywords

Monogenic signals Frequency Poisson kernel Möbius transforms 

Mathematics Subject Classification (2000)

46F15 30G35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlfors, L.V.: Clifford numbers and Möbius transformations in R n. In: Chisholm, J.S.R., Common, A.K. (eds.) Clifford Algebras and Their Applications in Mathematical Physics, Proceedings of the NATO and SERC Workshop Held in Canterbury, September 15–27, 1985, NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, vol. 183, pp. 167–175. D. Reidel Publ., Dordrecht (1986)Google Scholar
  2. 2.
    Axelsson A., Kou K.I., Qian T.: Hilbert transforms and the Cauchy integral in Euclidean space. Stud. Math. 193(2), 161–187 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bell, S.: The Cauchy Transform, Potential Theory and Conformal Mapping, Studies in Advanced Mathematics. Steven R. Bell, Purdue University, August 14 (1992)Google Scholar
  4. 4.
    Brackx F., De Knock B., De Schepper H., Eelbode D.: On the interplay between the Hilbert transform and conjugate harmonic functions. Math. Methods Appl. (29)(12), 1435–1450 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Brackx F., De Schepper H., Eelbode D.: A new Hilbert transform on the unit sphere in R m. Complex Var. Elliptic Equ. 51(5–6), 453–462 (2006)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Brackx F., Delanghe R., Sommen F.: Clifford Analysis, vol. 76. Pitman, Boston (1982)Google Scholar
  7. 7.
    Bülow, T., Sommer, G.: Multi-dimensional sigal processing using an algebraically extended signal representation. In: Sommer, G., Koenderink, J.J. (eds.) Proceedings International Workshop on Algebraic Frames for the Perception-Action Cycle (AFPAC 97), Kiel. LNCS, vol. 1315, pp. 148–163. Springer, Berlin (1997)Google Scholar
  8. 8.
    Bülow, T., Sommer, G.: Algebraically extended representations of Multi-dimensional signals. In: Proceedings 10th Scandinavian Conference on Image Analysis, Lappeenranta, Finland, pp. 559–566 (1997)Google Scholar
  9. 9.
    Bülow, T.: Hypercomplex Spectral Signal Representations for the Processing and Analysis of Images. PhD thesis, University of Kiel, Germany (1999)Google Scholar
  10. 10.
    Brackx F., Van Acker N.: A conjugate Poisson kernel in Euclidean space. SIMON STEVIN Q. J. Pure Appl. Math. 67(1–2), 3–14 (1993)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Cohen L.: Time-Frequency Analysis: Theory and Applications. Prentice Hall, Inc., Upper Saddle River (1995)Google Scholar
  12. 12.
    Dang, P., Qian, T.: Hardy-Sobolev derivatives of phase and amplitude, and their applications. Preprint (2011)Google Scholar
  13. 13.
    Dang P., Qian T., You Z.: Hardy-Sobolev spaces decomposition in signal analysis. J. Fourier Anal. Appl. 17(1), 36–64 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Delanghe R., Sommen F., Soucek V.: Clifford Algebra and Spinor Valued Functions. Kluwer, Dordrecht (1992)zbMATHCrossRefGoogle Scholar
  15. 15.
    Felsberg, M.: Low-Level Image Processing with the Structure Multivector. Bericht Nr. 0203. Institut für Informatik und Praktische Mathematik der Christian-Albrechts-Universität zu Kiel, Kiel (2002)Google Scholar
  16. 16.
    Felsberg M., Sommer G.: The monogenic signal. IEEE Trans. Signal Process. 49(12), 3136–3144 (2001)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Garnett J.B.: Bounded Analytic Functions. Academic Press, London (1981)zbMATHGoogle Scholar
  18. 18.
    Lounesto, P.: Clifford Algebras and Spinors, 2nd edn. London Mathematical Society Lecture Note Series, vol. 286. Cambridge University Press, London (2001)Google Scholar
  19. 19.
    Li C., Mcintosh A., Qian T.: Clifford algebras, Fourier transforms, and singular convolution operators on Lipschitz surfaces. Rev. Mat. Iberoamericana 10, 665–721 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Picinbono B.: On instantaneous amplitude and phase of signals. IEEE Trans. Signal Process. 45(3), 552–560 (1997)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Peetre J., Qian T.: Moebius covariance of iterated Dirac operators. J. Aust. Math. Soc. (Ser. A) 56, 403–414 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Qian T.: Analytic signals and harmonic measure. J. Math. Anal. Appl. 314(2), 526–536 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Qian T., Chen Q.-H., Li L.-Q.: Analytic unit quadrature signals with non-linear phase. Phys. D Nonlinear Phenom. 203(1–2), 80–87 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Qian T.: Phase derivative of Nevanlinna functions and applications. Math. Methods Appl. Sci. 32, 253–263 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Qian T.: Intrinsic mono-component decomposition of functions: an advance of Fourier theory. Math. Methods Appl. Sci. 33(7), 880–891 (2010)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Qian T., Wang Y.-B.: Adaptive Fourier series—a variation of greedy algorithm. Adv. Comput. Math. 34(3), 279–293 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Qian T., Yang Y.: Hilbert transforms on the sphere with the Clifford analysis setting. J. Fourier Anal. Appl. 15(6), 753–774 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Stein E., Weiss G.: Introduction to Fourier Analysis on Euclidean. Princeton University Press, NJ (1987)Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.School of Mathematics and Computational ScienceSun Yat-Sen UniversityGuangzhouChina
  2. 2.Department of Mathematics, Faculty of Science and TechnologyUniversity of MacauMacaoChina
  3. 3.Faculty of EngineeringGhent UniversityGhentBelgium

Personalised recommendations