Skip to main content
Log in

Spectral Asymptotics of Self-Adjoint Fourth Order Differential Operators with Eigenvalue Parameter Dependent Boundary Conditions

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

A fourth-order regular ordinary differential operator with eigenvalue dependent boundary conditions is considered. This problem is realized by a quadratic operator pencil with self-adjoint operators. The location of the eigenvalues is discussed and the first four terms of the eigenvalue asymptotics are evaluated explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Behncke H.: Spectral analysis of fourth order differential operators. I. Math. Nachr. 279, 58–72 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Behncke H.: Spectral analysis of fourth order differential operators. II. Math. Nachr. 279, 73–85 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Binding P.A., Browne P.J., Watson B.A.: Sturm–Liouville problems with boundary conditions rationally dependent on the eigenparameter. I. Proc. Edinb. Math. Soc. (2) 45, 631–645 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Binding P.A., Browne P.J., Watson B.A.: Sturm–Liouville problems with boundary conditions rationally dependent on the eigenparameter. II. J. Comput. Appl. Math. 148, 147–168 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kerimov, N.B., Aliev, Z.S.: Basis properties of a spectral problem with a spectral parameter in the boundary condition. Mat. Sb. 197(10), 65–86 (2006) [translation in Sb. Math. 197, 1467–1487 (2006)] (Russian)

    Google Scholar 

  6. Kerimov, N.B., Aliev, Z.A.: On the basis property of the system of eigenfunctions of a spectral problem with a spectral parameter in the boundary condition. Differ. Uravn. 43, 886–895, 1004 (2007) [translation in Differ. Equ. 43, 905–915 (2007)] (Russian)

    Google Scholar 

  7. Marletta M., Shkalikov A., Tretter C.: Pencils of differential operators containing the eigenvalue parameter in the boundary conditions. Proc. R. Soc. Edinb. Sect. A 133, 893–917 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mennicken, R., Möller, M.: Non-self adjoint boundary eigenvalue problems. In: North-Holland Mathematics Studies, vol. 192. Elsevier, Amsterdam (2003)

  9. Möller M., Pivovarchik V.: Spectral properties of a fourth order differential equation. J. Anal. Appl. 25, 341–366 (2006)

    MATH  Google Scholar 

  10. Möller M., Zettl A.: Symmetric Differential operators and their Friedrichs extension. J. Differ. Equ. 115, 50–69 (1995)

    Article  MATH  Google Scholar 

  11. Möller M., Zinsou B.: Self-adjoint fourth order differential operator with eigenvalue parameter dependent boundary conditions. Quaestiones Math. 34, 1–14 (2011)

    Article  Google Scholar 

  12. Pivovarchik V., van der Mee C.: The inverse generalized Regge problem. Inverse Problems 17, 1831–1845 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shkalikov, A.A.: Boundary problems for ordinary differential equations with parameter in the boundary conditions. Trudy Sem. Petrovsk. 9, 190–229 (1983) (Engl. transl.: J. Soviet Math. 33, 1311–1342 (1986))

  14. Wang A., Sun J., Zettl A.: The classification of self-adjoint boundary conditions: separated, coupled, and mixed. J. Funct. Anal. 255, 1554–1573 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang A., Sun J., Zettl A.: Characterization of domains of self-adjoint ordinary differential operators. J. Differ. Equ. 246, 1600–1622 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Weidmann, J.: Spectral theory of ordinary differential operators. In: Lecture Notes in Mathematics, vol. 1258. Springer, Berlin (1987)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Möller.

Additional information

Communicated by Guest Editors L. Littlejohn and J. Stochel.

Dedicated to Prof. Franciszek Szafraniec on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Möller, M., Zinsou, B. Spectral Asymptotics of Self-Adjoint Fourth Order Differential Operators with Eigenvalue Parameter Dependent Boundary Conditions. Complex Anal. Oper. Theory 6, 799–818 (2012). https://doi.org/10.1007/s11785-011-0162-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-011-0162-1

Keywords

Mathematics Subject Classification (2000)

Navigation