Skip to main content
Log in

Operator Frames for Banach Spaces

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

In this paper, operator Bessel sequences, operator frames, Banach operator frames, Operator Riesz bases for Banach spaces and dual frames of an operator frame are introduced and discussed. The necessary and sufficient condition for a Banach space to have an operator frame, a Banach operator frame or an operator Riesz basis are given. In addition, operator frames and operator Riesz bases are characterized by the analysis operator of operator Bessel sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldroubi A., Cabrelli C., Molter U.: Wavelets on irregular grids with arbitrary dilation matrices and frame atomics for \({L^2(\mathbb{R}^d)}\) . Appl. Comput. Harmon. Anal. 17, 119–140 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aldroubi A., Sung Q., Tang W.: p-frames and shift invariant subspaces of L p. J. Fourier Anal. Appl. 7, 1–22 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Asgari M.S., Khosravi A.: Frames and bases of subspaces in Hilbert spaces. J. Math. Anal. Appl. 308, 541–553 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao H.-X.: Bessel sequences in a Hilbert spaces. J. Eng. Math. (in Chinese) 117, 92–95 (2000)

    Google Scholar 

  5. Cao, H.-X., Li, L., Chen, Q.-J., Ji, G.-X.: (p, Y)-Operator frames for a Banach space. J. Math. Anal. Appl. 347 (2008)

  6. Conway J.B.: A course in functional analysis 3rd edn. Springer, New York (1985)

    MATH  Google Scholar 

  7. Christensen O.: An introduction to frames and Riesz bases. Birkhäuser, Boston (2003)

    MATH  Google Scholar 

  8. Christensen O.: Frame perturbations. Proc. Am. Math. Soc. 123(4), 1217–1220 (1995)

    Article  MATH  Google Scholar 

  9. Christensen O., Stoeva D.T.: p-frames in separable Banach spaces. Adv. Comput. Math. 18, 117–126 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Christen O., Eldar Y.C.: Oblique dual frames and shift-invariant spaces. Appl. Comput. Harmon. Anal. 17, 48–68 (2004)

    Article  MathSciNet  Google Scholar 

  11. Casazza P.G.: The art of frame theory. Taiwang J. Math. 4(2), 129–201 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Casazza P.G., Han D., Larson D.: Frames for Banach spaces. Contemp. Math. 247, 149–182 (1999)

    Article  MathSciNet  Google Scholar 

  13. Casazza P.G., Kutyniok G.: Frame of subspaces. Contemp. Math. 345, 87–113 (2003)

    Article  MathSciNet  Google Scholar 

  14. Casazza P.G., Christensen O.: Perturbation of operators and applications to frame theory. J. Fourier Anal. Appl. 3(5), 543–557 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Casazza P.G., Christensen O., Stoeva D.: Frame expansions in separable Banach spaces. J. Math. Anal. Appl. 1, 1–14 (2005)

    MathSciNet  Google Scholar 

  16. Daubechies I., Grossmann A., Meyer Y.: painless nonorthogonal expansion. J. Math. Phys. 27, 1271–1283 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Duffin R.J., Schaeffer A.C.: A class of nonharmonic Fourier serier. Trans. Am. Math. Soc. 72, 341–366 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  18. Eldar Y.: Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors. J. Fourier Anal. Appl. 9, 77–96 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fornasier M.: Quasi-orthogonal decompositions of structured frames. J. Math. Anal. Appl. 289, 180–199 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fornasier, M.: Decompositions of Hilbert spaces: local construction of gobal frames. In: Bojanov, B. (ed.) Proceedings of International Conference on Constructive Function Theory, pp. 271–281. Varna, 2002, DARBA, Sofia (2003)

  21. Gabor D.: Theory of communications. J. Inst. Electr. Eng. 93, 429–457 (1946)

    Google Scholar 

  22. Grochenig K.: Describing functions: atomic decompositions versus frames. Monatsh. Math. 112, 1–41 (1991)

    Article  MathSciNet  Google Scholar 

  23. Han D., Larson D.: Frame, bases and group representations. Memoir. Am. Math. Soc. 147, 1–94 (2000)

    MathSciNet  Google Scholar 

  24. Li C.-Y., Cao H.-X.: X d frames and Riesz basis in Banach Spaces. Acta Math. Sin. (in Chinese) 49(6), 1361–1366 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Li C.-Y., Cao H.-X.: Operator frames for B(H). In: Qian, T., Vai, M.I., Yuesheng, X. (eds) Wavelet Analysis and Applications Applications of Numerical Harmonic Analysis, pp. 67–82. Springer, Berlin (2006)

    Google Scholar 

  26. Li S., Ogawa H.: Pseudoframes for subspaces with applications. J. Fourier Anal. Appl. 10, 409–431 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sun W.: G-frames and g-Riesz bases. J. Math. Anal. Appl. 322, 437–452 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sun W.: Stability of g-frames. J. Math. Anal. Appl. 326, 858–868 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Young R.: An introduction to nonharmonic Fourier series. Academic Press, New York (1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Yan Li.

Additional information

Communicated by Palle Jorgensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, CY. Operator Frames for Banach Spaces. Complex Anal. Oper. Theory 6, 1–21 (2012). https://doi.org/10.1007/s11785-010-0076-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-010-0076-3

Keywords

Mathematics Subject Classification (2000)

Navigation