Complex Analysis and Operator Theory

, Volume 6, Issue 2, pp 325–339

# On Fundamental Solutions in Clifford Analysis

• F. Brackx
• H. De Schepper
• M. E. Luna-Elizarrarás
• M. Shapiro
Article

## Abstract

Euclidean Clifford analysis is a higher dimensional function theory offering a refinement of classical harmonic analysis. The theory is centred around the concept of monogenic functions, which constitute the kernel of a first order vector valued, rotation invariant, differential operator $${\underline{\partial}}$$ called the Dirac operator, which factorizes the Laplacian. More recently, Hermitean Clifford analysis has emerged as a new branch of Clifford analysis, offering yet a refinement of the Euclidean case; it focusses on a subclass of monogenic functions, i.e. the simultaneous null solutions, called Hermitean (or h−) monogenic functions, of two Hermitean Dirac operators $${\partial_{\underline{z}}}$$ and $${\partial_{\underline{z}^\dagger}}$$ which are invariant under the action of the unitary group, and constitute a splitting of the original Euclidean Dirac operator. In Euclidean Clifford analysis, the Clifford–Cauchy integral formula has proven to be a corner stone of the function theory, as is the case for the traditional Cauchy formula for holomorphic functions in the complex plane. Also a Hermitean Clifford–Cauchy integral formula has been established by means of a matrix approach. Naturally Cauchy integral formulae rely upon the existence of fundamental solutions of the Dirac operators under consideration. The aim of this paper is twofold. We want to reveal the underlying structure of these fundamental solutions and to show the particular results hidden behind a formula such as, e.g. $${\underline{\partial}E = \delta}$$. Moreover we will refine these relations by constructing fundamental solutions for the differential operators issuing from the Euclidean and Hermitean Dirac operators by splitting the Clifford algebra product into its dot and wedge parts.

## Keywords

Fundamental Solution Dirac Operator Clifford Algebra Monogenic Function Cauchy Integral Formula
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
Abreu Blaya, R., Bory Reyes, J., Brackx, F., De Knock, B., De Schepper, H., Pena Pena, D., Sommen, F.: Hermitean Cauchy integral decomposition of continuous functions on hypersurfaces. Bound. Value Probl. ID 425256 (2009)Google Scholar
2. 2.
Abreu Blaya, R., Bory Reyes, J., Pena Pena, D., Sommen, F.: A boundary value problem for Hermitian monogenic functions. Bound. Value Probl. ID 385874 (2008)Google Scholar
3. 3.
Brackx F., Bureš J., De Schepper H., Eelbode D., Sommen F., Souček V.: Fundaments of Hermitean Clifford analysis. Part I: complex structure. Compl. Anal. Oper. Theory 1(3), 341–365 (2007)
4. 4.
Brackx F., Bureš J., De Schepper H., Eelbode D., Sommen F., Souček V.: Fundaments of Hermitean Clifford analysis. Part II: splitting of h-monogenic equations. Complex Var. Elliptic Eq. 52(10–11), 1063–1079 (2007)
5. 5.
Brackx F., De Knock B., De Schepper H.: A specific family of Clifford distributions. In: Son, L., Tutschke, W., Jain, S. (eds) Methods of Complex and Clifford Analysis, pp. 215–227. SAS Int Publ, Delhi (2004)Google Scholar
6. 6.
Brackx F., De Knock B., De Schepper H.: Multi-vector spherical monogenics, spherical means and distributions in Clifford analysis. Acta Math. Sin. 21(5), 1197–1208 (2005)
7. 7.
Brackx F., De Knock B., De Schepper H.: On the Fourier spectra of distributions in Clifford analysis. Chin. Ann. Math. 27(5), 495–506 (2006)
8. 8.
Brackx F., De Knock B., De Schepper H., Eelbode D.: A calculus scheme for Clifford distributions. Tokyo J. Math. 29(2), 495–513 (2006)
9. 9.
Brackx, F., De Knock, B., De Schepper, H., Sommen, F.: Distributions in Clifford analysis: an Overview. In: Eriksson, S.-L. (ed.) Clifford Analysis and Applications—Proceedings of the Summer School, Tampere 2004. Tampere University of Technology, Institute of Mathematics, Research Report No., vol. 82, pp. 59–73 (2006)Google Scholar
10. 10.
Brackx F., De Knock B., De Schepper H.: A matrix Hilbert transform in Hermitean Clifford analysis. J. Math. Anal. Appl. 344(2), 1068–1078 (2008)
11. 11.
Brackx F., De Knock B., De Schepper H., Sommen F.: On Cauchy and Martinelli–Bochner integral formulae in Hermitean Clifford analysis. Bull. Braz. Math. Soc. (New Series) 40(3), 395–416 (2009)
12. 12.
Brackx F., Delanghe R., Sommen F.: Clifford Analysis. Pitman Publishers, Boston (1982)
13. 13.
Brackx F., Delanghe R., Sommen F.: Spherical means, distributions and convolution operators in Clifford analysis. Chin. Ann. Math. 24B(2), 133–146 (2003)
14. 14.
Brackx, F., Delanghe, R., Sommen, F.: Spherical means and distributions in Clifford analysis. In: Qian, T., Hempfling, T., McIntosh, A., Sommen, F. (eds.) Advances in Analysis and Geometry: New Developments using Clifford Algebras. Trends in Mathematics. Birkhäuser, Basel, pp. 65–96 (2004)Google Scholar
15. 15.
Brackx F., Delanghe R., Sommen F.: Differential forms and/or multivector functions. Cubo 7(2), 139–169 (2005)
16. 16.
Brackx, F., De Schepper, H., Eelbode, D., Souček, V.: The Howe dual pair in Hermitean Clifford analysis. Rev. Mat. Iberoamericana (accepted)Google Scholar
17. 17.
Brackx F., De Schepper H., Sommen F.: A theoretical framework for wavelet analysis in a Hermitean Clifford setting. Comm. Pure Appl. Anal. 6(3), 549–567 (2007)
18. 18.
Brackx F., De Schepper H., Sommen F.: The Hermitian Clifford analysis toolbox. Appl. Clifford Algebras 18(3–4), 451–487 (2008)
19. 19.
Brackx F., De Schepper H., Souček V.: Differential forms versus multi-vector functions in Hermitean Clifford analysis (Cubo, to appear)Google Scholar
20. 20.
Colombo F., Sabadini I., Sommen F., Struppa D.C.: Analysis of Dirac systems and computational algebra. Birkhäuser, Boston (2004)
21. 21.
Delanghe R., Sommen F., Souček V.: Clifford Algebra and Spinor-Valued Functions. Kluwer, Dordrecht (1992)
22. 22.
Eelbode D.: Irreducible $${\mathfrak{sl}(m)}$$-modules of Hermitean monogenics. Complex Var. Elliptic Eq. 53(10), 975–987 (2008)
23. 23.
Gilbert J., Murray M.: Clifford algebras and Dirac operators in Harmonic analysis. Cambridge University Press, Cambridge (1991)
24. 24.
Guerlebeck K., Sproessig W.: Quaternionic and Clifford Calculus for Physicists and Engineers. Wiley, Chichester (1998)Google Scholar
25. 25.
Krantz S.: Function theory of several complex variables, 2nd edn. Wadsworth & Brooks/Cole, Pacific Grove (1992)
26. 26.
Kytmanov A.: The Bochner–Martinelli Integral and its Applications. Birkhaüser, Basel (1995)
27. 27.
Rocha–Chavez R., Shapiro M., Sommen F.: Integral Theorems for Functions and Differential Forms in $${\mathbb{C}_m}$$. Research Notes in Math., vol. 428. Chapman & Hall/CRC, New York (2002)Google Scholar
28. 28.
Ryan J.: Complexified Clifford analysis. Complex Variables: Theory & Application 1, 119–149 (1982)
29. 29.
Sabadini I., Sommen F.: Hermitian Clifford analysis and resolutions. Math Meth. Appl. Sci. 25(16–18), 1395–1414 (2002)
30. 30.
Sommen F., Peña D.: A Martinelli–Bochner formula for the Hermitian Dirac equation. Math. Meth. Appl. Sci. 30(9), 1049–1055 (2007)

© Birkhäuser / Springer Basel AG 2010

## Authors and Affiliations

• F. Brackx
• 1
Email author
• H. De Schepper
• 1
• M. E. Luna-Elizarrarás
• 2
• M. Shapiro
• 2
1. 1.Clifford Research Group, Faculty of EngineeringGhent UniversityGhentBelgium
2. 2.Instituto Politécnico NacionalMexico CityMexico