Abstract
We wish to investigate mean ergodic theorems for generalizations of almost periodic functions on semigroups, as well as for semigroups of operators in the framework of locally convex spaces. Specially, we present functional characterizations of concepts of almost periodicity for vector-valued functions.
Similar content being viewed by others
Data availability
Not applicable.
References
Amerio, L., Prouse, G.: Almost-Periodic Functions and Functional Equations. Van Nostrand, Reinhold (1971)
Arendt, W., Batty, C.J.K.: Almost periodic solutions of first- and second-order Cauchy problems. J. Differ. Equ. 137, 363–383 (1997)
Baillon, J.B.: Un theoreme de type ergodique pour les contractions nonlineaires dans un espace de Hilbert. C. R. Acad. Sci. Paris 280, 1511–1514 (1975)
Baillon, J.B.: Quelques proprietes de convergence asymptotique pour les semigroupes de contractions impaires. C. R. Acad. Sci. Paris 283, 75–78 (1976)
Baillon, J.B., Brezis, H.: Une remarque sur le comportement asymptotique des semigroupes nonlineaires. Houston J. Math. 2, 5–7 (1976)
Batty, C.J.K., Hutter, W., Rabiger, F.: Almost periodicity of mild solutions of inhomogeneous periodic Cauchy problems. J. Differ. Equ. 156, 309–327 (1999)
Berglund, J.F., Junghenn, H.D., Milnes, P.: Analysis on Semigroups. Wiley, New York (1988)
Bochner, S.: Beitriige zur theorie der fastperiodischen funktionen. Math. Ann. 96, 119–147 (1927)
Bochner, S.: Abstrakte fastperiodische funktionen. Acta Math. 61, 149–184 (1933)
Bohr, H.: Zur Theorie der fastperiodischen Funktionen I. Acta Math. 45, 29–127 (1925)
Bohr, H.: Zur theorie der fastperiodischen funktionen III. Acta Math. 47, 237–281 (1926)
Bruck, R.E.: A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces. Israel J. Math. 32, 107–116 (1979)
Day, M.M.: Amenable semigroup. Ill. J. Math. 1, 509–544 (1957)
Djafari Rouhani, B., Jamshidnezhad, P., Saeidi, S.: Existence and approximation of zeroes of monotone operators by solutions to nonhomogeneous difference inclusions. J. Math. Anal. Appl. 502, 125268 (2021)
Eberlein, W.F.: Abstract ergodic theorems and weak almost periodic functions. Trans. Am. Math. Soc. 67, 217–240 (1949)
Goldberg, S., Irwin, P.: Weakly almost periodic vector-valued functions. Diss. Math. (Rozprawy Mat.) 157, 1–42 (1979)
Kada, O.: Existence of ergodic retraction for noncommutative semigroups in Banach spaces. Proc. Am. Math. Soc. 127, 3013–3020 (1999)
Kada, O.: Strong ergodic theorems for commutative semigroups of operators. Proc. Am. Math. Soc. 127, 3003–3011 (1999)
Kido, K., Takahashi, W.: Mean ergodic theorems for semigroups of linear operators. J. Math. Anal. Appl. 103, 387–394 (1984)
Kohlenbach, U.: A uniform quantitative form of sequential weak compactness and Baillon’s nonlinear ergodic theorem. Commun. Contemp. Math. 14, 1250006 (2012)
Lau, A.T., Shioji, N., Takahashi, W.: Existence of nonexpansive retractions for amenable semigroups of nonexpansive mappings and nonlinear ergodic theorems in Banach spaces. J. Funct. Anal. 161, 62–75 (1999)
Leustean, L., Nicolae, A.: Effective results on nonlinear ergodic averages in CAT \((\kappa )\) spaces. Ergod. Theory Dyn. Syst. 36(8), 2580–2601 (2016)
Milnes, P.: On vector-valued weakly almost periodic functions. J. Lond. Math. Soc. 22, 467–472 (1980)
Miyake, H., Takahashi, W.: Vector-valued weakly almost periodic functions and mean ergodic theorems in Banach spaces. J. Nonlinear Convex Anal. 9, 255–272 (2008)
Miyake, H., Takahashi, W.: Mean ergodic theorems for almost periodic semigroups. Taiwanese J. Math. 14, 1079–1091 (2010)
Paterson, A.L.T.: Amenability. American Mathematical Society, Providence (1988)
Pazy, A.: Remarks on nonlinear ergodic theory in Hilbert space. Nonlinear Anal. 3, 863–871 (1979)
Reich, S.: Nonlinear evolution equations and nonlinear ergodic theorems. Nonlinear Anal. 1, 319–330 (1977)
Reich, S.: Almost convergence and nonlinear ergodic theorems. J. Approx. Theory 24, 269–272 (1978)
Rode, G.: An ergodic theorem for semigroups of nonexpansive mappings in a Hilbert space. J. Math. Anal. Appl. 85, 172–178 (1982)
Ruess, W.M., Phong, V.Q.: Asymptotically almost periodic solutions of evolution equations in Banach spaces. J. Differ. Equ. 122, 282–301 (1995)
Ruess, W.M., Summers, W.H.: Integration of Asymptotically Almost Periodic Functions and Weak Asymptotic Almost Periodicity. Instytut Matematyczny Polskiej Akademi Nauk, Warszawa (1989)
Ruess, W.M., Summers, W.H.: Ergodic theorems for semigroups of operators. Proc. Am. Math. Soc. 114, 423–432 (1992)
Saeidi, S.: Existence of ergodic retractions for semigroups in Banach spaces. Nonlinear Anal. 69, 3417–3422 (2008)
Saeidi, S.: Ergodic retractions for amenable semigroups in Banach spaces with normal structure. Nonlinear Anal. 71, 2558–2563 (2009)
Schaefer, H.H.: Topological Vector Spaces. Springer, New York (1971)
Suzuki, T., Takahashi, W.: Weak and strong convergenc theorems for nonexpansive mappings in Banach spaces. Nonlinear Anal. 47, 2805–2815 (2001)
Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)
Voigt, J.: A Course on Topological Vector Spaces, Compact Textbooks in Mathematics. Birkhäuser/Springer, New York (2020)
Author information
Authors and Affiliations
Contributions
All the authors contributed equally and reviewed the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Amini, F., Saeidi, S. Concepts of almost periodicity and ergodic theorems in locally convex spaces. J. Fixed Point Theory Appl. 25, 78 (2023). https://doi.org/10.1007/s11784-023-01081-9
Accepted:
Published:
DOI: https://doi.org/10.1007/s11784-023-01081-9
Keywords
- Generalizations of almost periodicity
- mean ergodic theorem
- invariant mean
- semigroups of operators
- locally convex space