Skip to main content
Log in

An application of Edelstein’s contraction principle: the attractor of a graph-directed generalized iterated function system

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

This paper gathers two generalizations of iterated function systems, namely the one introduced by the first two authors under the name of generalized iterated function systems and the one introduced by Mauldin and Williams and Boore and Falconer under the label of graph-directed iterated function systems. By combining them we introduce the concept of a graph-directed generalized iterated function system. We prove that, under suitable contractivity assumptions on the constitutive functions of such a system and structural assumptions on the underlying metric space, it generates, via Edelstein’s contraction principle, a unique attractor. The result is illustrated by two examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Barnsley, M., Berger, M., Soner, H.: Mixing Markov chains and their images. Probl. Eng. Inf. Sci. 2, 387–414 (1988)

    Article  MATH  Google Scholar 

  2. Barnsley, M., Elton, J., Hardin, D.: Recurrent iterated function systems. Fractal approximation. Constr. Approx. 5, 3–31 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barnsley, M., Vince, A.: Tilings from graph directed iterated function systems. Geometrie Dedicata 212, 299–324 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bedford, T.: Dimension and dynamics for fractal recurrent sets. J. Lond. Math. Soc. 33, 89–100 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boore, G., Falconer, K.: Attractors of directed graph IFSs that are not standard IFS attractors and their Hausdorff measure. Math. Proc. Camb. Philos. Soc. 154, 325–349 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. da Cuhna, R., Oliveira, E., Strobin, F.: A multiresolution algorithm to generate images of generalized fuzzy fractal attractors. Numer. Algor. 86, 223–256 (2020)

    MathSciNet  Google Scholar 

  7. da Cuhna, R., Oliveira, E., Strobin, F.: A multiresolution algorithm to approximate the Hutchinson measure for IFS and GIFS. Commun. Nonlinear Sci. Numer. Simul. 91, 105423 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Das, M.: Contraction ratios for graph-directed iterated constructions. Proc. Am. Math. Soc. 134, 435–442 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Das, M., Ngai, S.: Graph-directed iterated function systems with overlaps. Indiana Univ. Math. J. 53, 109–134 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Das, M., Edgar, G.: Separation properties for graph-directed self-similar fractals. Topol. Appl. 152, 138–156 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dekking, F.: Reccurent sets. Adv. Math. 44, 78–104 (1982)

    Article  MATH  Google Scholar 

  12. Dinevari, T., Frigon, M.: Applications of multivalued contractions on graph to graph-directed iterated function systems. Abstr. Appl. Anal. (2015) (article ID 345856)

  13. Dinevari, T., Frigon, M.: A contraction principle on gauge spaces with graphs and application to infinite graph-directed iterated function systems. Fixed Point Theory 18, 523–544 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dumitru, D.: Generalized iterated function systems containing Meir-Keeler functions. An. Univ. Bucureşti. Mat. 58, 109–121 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Dumitru, D., Ioana, L., Sfetcu, R., Strobin, F.: Topological version of generalized (infinite) iterated function systems. Chaos Solitons Fractals 71, 78–90 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Edelstein, M.: An extension of Banach’s contraction principle. Proc. Am. Math. Soc. 12, 7–10 (1961)

    MathSciNet  MATH  Google Scholar 

  17. Edgar, G.: Measure, Topology and Fractal Geometry, 2nd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  18. Edgar, G., Golds, J.: A fractal dimension estimate for a graph-directed iterated function system of non-similarities. Indiana Univ. Math. J. 48, 429–447 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. García, G.: Approximating the attractor set of iterated function systems of order \(m\) by \(\alpha \)-dense curves. Mediterr. J. Math. 17 (2020) (paper No. 147)

  20. Gwóźdź-Łukawska, G., Jachymski, J.: IFS on a metric space with a graph structure and extensions of the Kelisky-Rivlin theorem. J. Math. Anal. Appl. 356, 453–463 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hutchinson, J.: Fractals and self similarity. Indiana Univ. Math. J. 30, 713–747 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jaros, P., Maślanka, Ł, Strobin, F.: Algorithms generating images of attractors of generalized iterated function systems. Numer. Algor. 73, 477–499 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jun, L., Yang, Y.: On single-matrix graph-directed iterated function systems. J. Math. Anal. Appl. 372, 8–18 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kunze, H., La Torre, D., Mendivil, F., Vrscay, E.: Fractal Based Methods in Analysis. Springer, New York (2012)

    Book  MATH  Google Scholar 

  25. Maślanka, Ł: On a typical compact set as the attractor of generalized iterated function systems of infinite order. J. Math. Anal. Appl. 484, 123740 (2020). (17 pp)

    Article  MathSciNet  MATH  Google Scholar 

  26. Máté, L.: The Hutchinson-Barnsley theory for certain non-contraction mappings. Period. Math. Hungar. 27, 21–33 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mauldin, D., Williams, S.: Hausdorff dimension in graph directed constructions. Trans. Am. Math. Soc. 309, 811–829 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Miculescu, R.: Generalized iterated function systems with place dependent probabilities. Acta Appl. Math. 130, 135–150 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Miculescu, R., Mihail, A., Urziceanu, S.: A new algorithm that generates the image of the attractor of a generalized iterated function system. Numer. Algor. 83, 1399–1413 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Miculescu, R., Mihail, A., Urziceanu, S.: Contractive affine generalized iterated function systems which are topologically contracting. Chaos Solitons Fractals 141, 110404 (2020). (8 pp)

    Article  MathSciNet  MATH  Google Scholar 

  31. Miculescu, R., Urziceanu, S.: The canonical projection associated with certain possibly infinite generalized iterated function systems as a fixed point. J. Fixed Point Theory Appl. 20 (2018) (Paper No. 141)

  32. Mihail, A., Miculescu, R.: Applications of fixed point theorems in the theory of generalized IFS. Fixed Point Theory Appl. (2008) (Art. ID 312876)

  33. Mihail, A., Miculescu, R.: A generalization of the Hutchinson measure. Mediterr. J. Math. 6, 203–213 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mihail, A., Miculescu, R.: Generalized IFSs on noncompact spaces. Fixed Point Theory Appl. (2010) (Art. ID 584215)

  35. Oliveira, E.: The ergodic theorem for a new kind of attractor of a GIFS. Chaos Solitons Fractals 98, 63–71 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Oliveira, E., Strobin, F.: Fuzzy attractors appearing from GIFZS. Fuzzy Set Syst. 331, 131–156 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Reich, S.: Fixed points of contractive functions. Boll. Un. Mat. Ital. 5, 26–42 (1972)

    MathSciNet  MATH  Google Scholar 

  38. Secelean, N.: Invariant measure associated with a generalized countable iterated function system. Mediterr. J. Math. 11, 361–372 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Secelean, N.: Generalized iterated function systems on the space \( l^{\infty }(X)\). J. Math. Anal. Appl. 410, 847–858 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Strobin, F.: Attractors of generalized IFSs that are not attractors of IFSs. J. Math. Anal. Appl. 422, 99–108 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Strobin, F., Swaczyna, J.: On a certain generalisation of the iterated function system. Bull. Aust. Math. Soc. 87, 37–54 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Strobin, F., Swaczyna, J.: A code space for a generalized IFS. Fixed Point Theory 17, 477–493 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Urziceanu, S.: Alternative characterizations of AGIFSs having attractor. Fixed Point Theory 20, 729–740 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Werner, I.: Contractive Markov systems. J. Lond. Math. Soc. 71, 236–258 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the reviewers and to the editor whose extremely generous and valuable remarks and comments brought substantial improvements to the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Miculescu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miculescu, R., Mihail, A. & Urziceanu, SA. An application of Edelstein’s contraction principle: the attractor of a graph-directed generalized iterated function system. J. Fixed Point Theory Appl. 24, 63 (2022). https://doi.org/10.1007/s11784-022-00978-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11784-022-00978-1

Keywords

Mathematics Subject Classification

Navigation