Skip to main content
Log in

Local and global coincidence homology classes

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

For two differentiable maps between two manifolds of possibly different dimensions, the local and global coincidence homology classes are introduced and studied by Bisi-Bracci-Izawa-Suwa (2016) in the framework of Čech-de Rham cohomology. We take up the problem from the combinatorial viewpoint and give some finer results, in particular for the local classes. As to the global class, we clarify the relation with the cohomology coincidence class as studied by Biasi-Libardi-Monis (2015). In fact they introduced such a class in the context of several maps and we also consider this case. In particular we define the local homology class and give some explicit expressions. These all together lead to a generalization of the classical Lefschetz coincidence point formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biasi, C., Libardi, A.K.M., Monis, T.F.M.: The Lefschetz coincidence class of \(p\) maps. Forum Math. 27, 1717–1728 (2015). https://doi.org/10.1515/forum-2013-0038

    Article  MathSciNet  MATH  Google Scholar 

  2. Bisi, C., Bracci, F., Izawa, T., Suwa, T.: Localized intersection of currents and the Lefschetz coincidence point theorem. Annali di Mat. Pura ed Applicata 195, 601–621 (2016). https://doi.org/10.1007/s10231-015-0480-4

    Article  MathSciNet  MATH  Google Scholar 

  3. Brasselet, J.-P.: Définition combinatoire des homomorphismes de Poincaré, Alexander et Thom pour une pseudo-variété, Astérisque 82–83, Soc. Math. France, pp. 71–91 (1981)

  4. Brouwer, L.E.J.: Über eineindeutige, stetige Transformationen von Flächen in sich. Math. Ann. 69, 176–180 (1910)

    Article  MathSciNet  Google Scholar 

  5. Fulton, W.: Intersection Theory. Springer, New York (1984)

    Book  Google Scholar 

  6. Greub, W., Halperin, S., Vanstone, R.: Connections, Curvature, and Cohomology, vol. I. Academic Press, New York (1972)

    MATH  Google Scholar 

  7. Lefschetz, S.: Intersections and transformations of complexes and manifolds. Trans. Am. Math. Soc. 28, 1–49 (1926)

    Article  MathSciNet  Google Scholar 

  8. Lefschetz, S.: On the fixed point formula. Ann. Math. 38, 819–822 (1937)

    Article  MathSciNet  Google Scholar 

  9. Poincaré, H.: Mémoire sur les courbes définies par une équation différentielle IV. J. Math. Pures et Appl. 2, 151–217 (1886)

    MATH  Google Scholar 

  10. Saveliev, P.: Lefschetz coincidence theory for maps between spaces of different dimensions. Topol. Appl. 116, 137–152 (2001)

    Article  MathSciNet  Google Scholar 

  11. Steenrod, N.E.: The work and influence of Professor Lefschetz in algebraic topology, Algebraic Geometry and Topology: A Symposium in Honor of Solomon Lefschetz, Princeton Univ. Press, Princeton, pp. 24–43 (1957)

  12. Suwa, T.: Indices of Vector Fields and Residues of Singular Holomorphic Foliations. Hermann, Paris (1998)

    MATH  Google Scholar 

  13. Suwa, T.: Residue theoretical approach to intersection theory, Real and Complex Singularities. Contemp. Math. Am. Math. Soc. 459, 207–261 (2008)

    Article  Google Scholar 

  14. Suwa, T.: Complex Analytic Geometry (tentative title), in preparation

  15. Vick, J.W.: Homology Theory: An Introduction to Algebraic Topology. Gaduate Texts in Mathematics. Springer, New York (1994)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuo Suwa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J.-P. Brasselet: Partially supported by CNRS, Aix-Marseille University and FAPESP Grant No. 2015/06697-9. T. Suwa: Partially supported by the JSPS Grant nos. 24540060 and 16K05116.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brasselet, JP., Suwa, T. Local and global coincidence homology classes. J. Fixed Point Theory Appl. 23, 24 (2021). https://doi.org/10.1007/s11784-021-00857-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11784-021-00857-1

Keywords

Mathematics Subject Classification

Navigation