Skip to main content
Log in

Compositions and convex combinations of Bregman weakly relatively nonexpansive operators in reflexive Banach spaces

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we investigate the right and left Bregman weakly relatively nonexpansive operators in reflexive Banach spaces. We first introduce the notions of convex hull demi-closedness principle, strictly strongly convex hull demi-closedness principle, strongly demi-closedness principle, and composition demi-closedness principle of a family of nonlinear mappings using another new notions of convex asymptotic fixed points, and composition asymptotic fixed points for such mappings in a Banach space E. We analyze, in particular, compositions and convex combinations of Bregman weakly relatively nonexpansive operators, and prove the convergence of the Mann iterative method for operators of these types. Finally, we use our results to approximate common zeros of maximal monotone mappings and solutions to convex feasibility problems. To support our results, we include nontrivial examples in the paper. Therefore, our results improve and generalize many known results in the current literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Prodi, G.: A Primer of Nonlinear Analysis. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  2. Bauschke, H.H., Borwein, J.M., Joint and separate convexity of the Bregman distance. In: Inherently Parallel Algorithms in Feasibility and Optimization and their Applications, Stud. Comput. Math., vol. 8. North-Holland, Amsterdam, pp. 23–36 (2001)

  3. Bauschke, H.H., Borwein, J.M.: Legendre functions and the method of random Bregman projections. J. Convex Anal. 4, 27–67 (1997)

    MathSciNet  MATH  Google Scholar 

  4. Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces. Commun. Contemp. Math. 3, 615–647 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Borwein, J.M., Reich, S., Sabach, S.: A characterization of Bregman firmly nonexpansive operators using a new monotonicity concept. J. Nonlinear Convex Anal. 12, 161–184 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7, 200–217 (1967)

    MathSciNet  MATH  Google Scholar 

  7. Bruck, R.E., Reich, S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houst. J. Math. 3, 459–470 (1977)

    MathSciNet  MATH  Google Scholar 

  8. Butnariu, D., Censor, Y., Reich, S.: Iterative averaging of entropic projections for solving stochastic convex feasibility problems. Comput. Optim. Appl. 8, 21–39 (1997)

    MathSciNet  MATH  Google Scholar 

  9. Butnariu, D., Iusem, A.N.: Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization. Kluwer, Dordrecht (2000)

    MATH  Google Scholar 

  10. Butnariu, D., Reich, S., Zaslavski, A.J.: Asymptotic behavior of relatively nonexpansive operators in Banach spaces. J. Appl. Anal. 7, 151–174 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Butnariu, D., Reich, S., Zaslavski, A.J.: There are many totally convex functions. J. Convex Anal. 13, 623–632 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Ceng, L.C.: Approximation of common solutions of a split inclusion problem and a fixed-point problem. J. Appl. Numer. Optim. 1, 1–12 (2019)

    Google Scholar 

  13. Censor, Y., Lent, A.: An iterative row-action method for interval convex programming. J. Optim. Theory Appl. 34, 321–353 (1981)

    MathSciNet  MATH  Google Scholar 

  14. Censor, Y., Zenios, S.A.: Parallel Optimization. Oxford University Press, New York (1997)

    MATH  Google Scholar 

  15. Chen, G., Teboulle, M.: Convergence analysis of a proximal-like minimization algorithm using Bregman functions. SIAM J. Optim. 3, 538–543 (1993)

    MathSciNet  MATH  Google Scholar 

  16. Dotson, W.G.: Fixed points of quasi-nonexpansive mappings. J. Aust. Math. Soc. 13, 167–170 (1972)

    MathSciNet  MATH  Google Scholar 

  17. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  18. Kassay, G., Reich, S., Sabach, S.: Iterative methods for solving systems of variational inequalities in reflexive Banach spaces. SIAM J. Optim. 21, 1319–1344 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Kohsaka, F., Takahashi, W.: Proximal point algorithms with Bregman functions in Banach spaces. J. Nonlinear Convex Anal. 6(3), 505–523 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Martín-Márquez, V., Reich, S., Sabach, S.: Right Bregman nonexpansive operators in Banach spaces. Nonlinear Anal. 75, 5448–5465 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Martín-Márquez, V., Reich, S., Sabach, S.: Existence and approximation of fixed points of right Bregman nonexpansive operators, Computational and Analytical Mathematics, Springer Proc. Math. Stat., vol. 50. Springer, New York, pp. 501–520 (2013)

  22. Martín-Márquez, V., Reich, S., Sabach, S.: Iterative methods for approximating fixed points of Bregman nonexpansive operators. Discrete Contin. Dyn. Syst. 6(4), 1043–1063 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Martín-Márquez, V., Reich, S., Sabach, S.: Bregman strongly nonexpansive operators in reflexive Banach spaces. J. Math. Anal. Appl. 440(2), 597–614 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Ma, Z., Wang, L., Gao,Y., Liu, Y.: A split equilibrium problem and a fixed point problem of quasi-\(\phi \)-nonexpansive mapping in Banach spaces. J. Nonlinear Funct. Anal. 2019, Article ID 17 (2019)

  25. Naraghirad, E.: Halpern’s iteration for Bregman relatively nonexpansive mappings in Banach spaces. Numer. Funct. Anal. Optim. 34(10), 1129–1155 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Naraghirad, E.: Approximation of common fixed points of nonlinear mappings satisfying jointly demi-closedness principle in Banach spaces. Mediterr. J. Math. 14(4), 162–177 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Naraghirad, E.: Bregman best proximity points for Bregman asymptotic cyclic contraction mappings in Banach spaces. J. Nonlinear Var. Anal. 3, 27–44 (2019)

    MATH  Google Scholar 

  28. Naraghirad, E., Takahashi, W., Yao, J.-C.: Generalized retraction and fixed point theorems using Bregman functions in Banach spaces. J. Nonlinear Convex Anal. 13(1), 141–156 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Naraghirad, E., Yao, J.-C.: Bregman weak relatively nonexpansive mappings in Banach spaces. Fixed Point Theory Appl. 2013, 141 (2013)

    MathSciNet  MATH  Google Scholar 

  30. Phelps, R.R.: Convex Functions, Monotone Operators, and Differentiability, 2nd edn. Lecture Notes in Mathematics, vol. 1364. Springer, Berlin (1993)

  31. Reem, D., Reich, S., De Pierro, A.: Re-examination of Bregman functions and new properties of their divergences. Optimization 68, 279–348 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Reich, S.: Product formulas, nonlinear semigroups, and accretive operators. J. Funct. Anal. 36, 147–168 (1980)

    MathSciNet  MATH  Google Scholar 

  33. Reich, S.: A limit theorem for projections. Linear Multilinear Algebra 13, 281–290 (1983)

    MathSciNet  MATH  Google Scholar 

  34. Reich, S.: A weak convergence theorem for the alternating method with Bregman distances. In: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Marcel Dekker, New York, pp. 313–318 (1996)

  35. Reich, S., Sabach, S.: Existence and approximation of fixed points of Bregman firmly nonexpansive operators in reflexive Banach spaces. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Optimization and Its Applications, vol. 49. Springer, New York, pp. 301–316 (2011)

  36. Reich, S., Sabach, S.: Two strong convergence theorems for a proximal method in reflexive Banach spaces. Numer. Funct. Anal. Optim. 31, 22–44 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Reich, S., Sabach, S.: A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces. J. Nonlinear Convex Anal. 10, 471–485 (2009)

    MathSciNet  MATH  Google Scholar 

  38. Rockafellar, R.T.: Characterization of subdifferentials of convex functions. Pac. J. Math. 17, 497–510 (1966)

    MathSciNet  MATH  Google Scholar 

  39. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33, 209–216 (1970)

    MathSciNet  MATH  Google Scholar 

  40. Takahashi, W.: Nonlinear Functional Analysis, Fixed Point Theory and its Applications. Yokahama Publishers, Yokahama (2000)

    MATH  Google Scholar 

  41. Takahashi, W.: Convex Analysis and Approximation of Fixed Points. Yokahama Publishers, Yokahama (2000)

    MATH  Google Scholar 

  42. Zǎlinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, River Edge (2002)

    MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the editor and anonymous referees for careful reading of the paper, valuable suggestions, and constructive comments which improved the paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eskandar Naraghirad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naraghirad, E. Compositions and convex combinations of Bregman weakly relatively nonexpansive operators in reflexive Banach spaces. J. Fixed Point Theory Appl. 22, 65 (2020). https://doi.org/10.1007/s11784-020-00800-w

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11784-020-00800-w

Keywords

Mathematics Subject Classification

Navigation