Skip to main content
Log in

A fixed point theorem for operators of Meir–Keeler type via the degree of nondensifiability and its application in dynamic programming

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we prove a fixed point theorem for operators of Meir–Keeler type by using the concept of degree of nondensifiability. As an application of our result, we study the existence of solutions for a class of functional equations appearing in dynamic programming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aghajani, A., Allahyari, R., Mursaleen, M.: A generalization of Darbo’s theorem with application to the solvability of systems of integral equations. J. Comput. Appl. Math. 260, 68–77 (2014)

    Article  MathSciNet  Google Scholar 

  2. Aghajani, A., Mursaleen, M., Shole Haghighi, A.: Fixed point theorem for Meir-Keeler condensing operators via measure of noncompactness. Acta Mathematica Scientia 35B(3), 552–566 (2015)

    Article  MathSciNet  Google Scholar 

  3. Allahyari, R., Arab, R., Haghighi, A.S.: Existence of solutions for some classes of integro-differential equations via measure of noncompactness. Electron. J. Qual. Theory Differ. Equ. 41, 1–18 (2015)

    Article  MathSciNet  Google Scholar 

  4. Ayerbe, J.M., Domínguez, T., López-Acedo, G.: Measures of Noncompactness in Metric Fixed Point Theory. Birkhäuser Verlag, Basel (1997)

    MATH  Google Scholar 

  5. Banas, J., Goebel, K.: Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, vol. 60. Dekker, New York (1980)

    MATH  Google Scholar 

  6. Banas, J., Mursaleen, M.: Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations. Springer, New Delhi (2014)

    MATH  Google Scholar 

  7. Banas, J., Olszowy, L.: On a class of measures of noncompactness in Banach algebras and their application to nonlinear integral equations. Zeitschrift fur Analysis und ihre Anwendungen 28, 475–498 (2009)

    Article  MathSciNet  Google Scholar 

  8. Belbas, S.A.: Dynamic programming and maximum principle for discrete Goursat systems. J. Math. Anal. Appl. 161, 57–77 (1991)

    Article  MathSciNet  Google Scholar 

  9. Bellman, R.: Dynamic Programming. Princeston University Press, Princenton (1957)

    MATH  Google Scholar 

  10. Bellman, R., Lee, E.S.: Functional equations in dynamic programming. Aequ. Math. 17, 1–18 (1978)

    Article  MathSciNet  Google Scholar 

  11. García, G.: Existence of solutions for infinite systems of differential equations by densifiability techniques. Filomat 10, 3419–3428 (2018)

    Article  MathSciNet  Google Scholar 

  12. García, G., Mora, G.: A fixed point result in Banach algebras based on the degree of nondensifiability and applications to quadratic integral equations. J. Math. Anal. Appl. 472, 1220–1235 (2019)

    Article  MathSciNet  Google Scholar 

  13. García, G., Mora, G.: The Degree of Convex Nondesifiability in Banach Spaces. J. Convex Anal. 22(3), 871–888 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Kaliaj, S.B.: A functional equation arising in dynamic programming. Aequat. Math. 91, 635–645 (2017)

    Article  MathSciNet  Google Scholar 

  15. Khosravi, H., Allahyari, R., Haghighi, A.S.: Existence of solutions of functional integral equations of convolution type using a new construction of a measure of noncompactness on \(L^p (\mathbb{R}_+)\). Appl. Math. Comput. 260, 140–147 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Liu, Z.: Existence theorems of solutions for certain classes of functional equation arising in dynamic programming. J. Math. Anal. Appl. 262, 529–553 (2001)

    Article  MathSciNet  Google Scholar 

  17. Liu, Z., Ume, J.S.: On properties of solutions for a class of functional equations arising in dynamic programming. J. Optim. Theory. Appl. 117, 533–551 (2003)

    Article  MathSciNet  Google Scholar 

  18. Liu, Z., Xu, Y., Ume, J.S., Kang, S.M.: Solutions to two functional equation arising in dynamic programming. J. Comp. Appl. Math. 192, 251–269 (2006)

    Article  MathSciNet  Google Scholar 

  19. Meir, A., keeler, E.: A theorem on contraction mappings. J. Math. Anal. Appl. 28, 326–329 (1969)

    Article  MathSciNet  Google Scholar 

  20. Mora, G., Cherruault, Y.: Characterization and generation of \(\alpha \)-dense curve. Comput. Math. Appl. 33(9), 83–91 (1997)

    Article  MathSciNet  Google Scholar 

  21. Roshan, J.R.: Existence of solutions for a class of system of functional integral equation via measures of noncompactness. J. Comput. Appl. Math. 313, 129–141 (2017)

    Article  MathSciNet  Google Scholar 

  22. Sagan, H.: Space-Filling Curves. Springer-Verlag, New York (1994)

    Book  Google Scholar 

  23. Vetro, C., Vetro, F.: On the existence of at least a solution for functional integral equations via measure of noncompactness. Banach J. Math. Anal. 11, 497–512 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The second and third authors were partially supported by the project MTM2016-79436-P. The authors are grateful to the anonymous referee for their useful comments and suggestions, which have improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Caballero.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caballero, J., Harjani, J. & Sadarangani, K. A fixed point theorem for operators of Meir–Keeler type via the degree of nondensifiability and its application in dynamic programming. J. Fixed Point Theory Appl. 22, 13 (2020). https://doi.org/10.1007/s11784-019-0748-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11784-019-0748-1

Keywords

Mathematics Subject Classification

Navigation