Skip to main content

Asian option as a fixed-point

Abstract

We characterize the price of an Asian option, a financial contract, as a fixed-point of a non-linear operator. In recent years, there has been interest in incorporating changes of regime into the parameters describing the evolution of the underlying asset price, namely the interest rate and the volatility, to model sudden exogenous events in the economy. Asian options are particularly interesting because the payoff depends on the integrated asset price. We study the case of both floating- and fixed-strike Asian call options with arithmetic averaging when the asset follows a regime-switching geometric Brownian motion with coefficients that depend on a Markov chain. The typical approach to finding the value of a financial option is to solve an associated system of coupled partial differential equations. Alternatively, we propose an iterative procedure that converges to the value of this contract with geometric rate using a classical fixed-point theorem.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Boyle, P., Draviam, T.: Pricing exotic options under regime switching. Insur. Math. Econ. 40, 267–282 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Buffington, J., Elliott, R.: Regime switching and European options. In: Stochastic theory and control: proceedings of a workshop held in Lawrence, Kansas. lecture notes in control and information sciences, pp. 281–300 (2002)

  3. 3.

    Cai, N., Song, Y., Kou, S.: A general framework for pricing Asian options under Markov processes. Oper. Res. 63, 540–554 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Chan, L., Zhu, S.-P.: An explicit analytic formula for pricing barrier options with regime switching. Math. Finan. Econ. 9, 29–37 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Carr, P., Schröder, M.: Bessel processes, the integral of geometric Brownian motion, and Asian options. Theory Probab. Appl. 48, 400–425 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Dan, D.-M., Nguyen, D., Sewell, G.: Numerical schemes for pricing Asian options under state-dependent regime-switching jumpdiffusion models. Comput. Math. Appl. 71, 443–458 (2016)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Funahashi, H., Kijima, M.: A unified approach for the pricing of options relating to averages. Rev. Deriv. Res. 20, 203–229 (2017)

    Article  Google Scholar 

  8. 8.

    Geman, H., Yor, M.: Bessel processes, Asian options, and perpetuities. Math. Finance 3, 349–375 (1993)

    Article  MATH  Google Scholar 

  9. 9.

    Guo, X., Zhang, Q.: Closed-form solutions for perpetual American put options with regime switching. SIAM J. Appl. Math. 64, 2034–2049 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Hamilton, J.D.: Rational-expectations econometric analysis of changes of regime. J. Econ. Dyn. Control 12, 385–423 (1988)

    Article  MATH  Google Scholar 

  11. 11.

    Hamilton, J.D.: A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57, 357–384 (1989)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Henderson, V., Wojakowski, R.: On the equivalence of floating-and fixed-strike Asian options. J. Appl. Prob. 39, 391–394 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Henderson, V., Hobson, D., Shaw, W., Wojakowski, R.: Bounds for in-progress floating-strike Asian options using symmetry. Ann. Oper. Res. 151, 81–98 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Kwok, Y.-K.: Mathematical Models of Financial Derivatives, 2nd edn. Springer Finance, Berlin (2008)

    MATH  Google Scholar 

  15. 15.

    Lapeyre, B., Temam, E.: Competitive Monte Carlo methods for the pricing of Asian options. J. Comp. Finance 5, 39–57 (2001)

    Article  Google Scholar 

  16. 16.

    Jacka, S.D., Ocejo, A.: On the regularity of American options with regime-switching uncertainty. Stoch. Proc. Appl. 128, 803–818 (2018)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Linetsky, V.: Spectral expansions for Asian (average price) options. Oper. Res. 52, 856–867 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Musiela, M., Rutkowski, M.: Martingale Methods in Financial Modelling, 2nd edn. Springer, Berlin (2005)

    MATH  Google Scholar 

  19. 19.

    Rogers, L.C.C., Shi, Z.: The value of an Asian Option. J. Appl. Prob. 32, 1077–1088 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Vasicek, O.: An equilibrium characterisation of the term structure. J. Finance Econ. 5, 177–188 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Yao, D.D., Zhang, Q., Zhou, X.: A regime-switching model for european options. In: Stochastic Processes, Optimization, and Control Theory: Applications in Financial Engineering, Queueing Networks, and Manufacturing Systems. International Series in Operations Research & Management Science 94. Springer, New York, pp. 281–300 (2006)

  22. 22.

    Yin, G.G., Zhu, C.: Hybrid Switching Diffusions: Properties and Applications. Series: Stochastic Modelling and Applied Probability, vol. 63. Springer, Berlin (2010)

    Google Scholar 

  23. 23.

    Yor, M.: On some exponential functionals of Brownian motion. Adv. Appl. Prob. 24, 509–531 (1992)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Zhu, S., Badran, A., Lu, X.: A new exact solution for pricing European options in a two-state regime switching economy. Comput. Math. Appl. 64, 2744–2755 (2012)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

I thank the referees for their valuable comments, which have significantly improved this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adriana Ocejo.

Appendix A: Proofs

Appendix A: Proofs

Proof of Lemma 2.1

Define the probability measure \(P^*\) equivalent to P via the Radon Nikodym derivative,

$$\begin{aligned} \frac{{\text {d}}P^*}{{\text {d}}P}\mid _{{\mathcal {F}}_T}= {\mathcal {E}}_T \end{aligned}$$

where,

$$\begin{aligned} {\mathcal {E}}_t:=\exp \left( \int _0^t \sigma (Y_u){\text {d}}B_u-\frac{1}{2}\int _0^t \sigma ^2(Y_u){\text {d}}u \right) . \end{aligned}$$

The call option satisfies:

$$\begin{aligned} \begin{aligned} \frac{C(s,x,a,i)}{x}&={\mathbb {E}}_{s,x,a,i}\left[ \frac{e^{-\int _s^T r(Y_u){\text {d}}u} X_T}{x} \left( 1-\frac{1}{T-t_0}\frac{A_T}{X_T}\right) ^+ \right] \\&={\mathbb {E}}_{s,x,a,i}\left[ {\mathcal {E}}_T {\mathcal {E}}^{-1}_s \,e^{-\delta (T-s)} \left( 1-\frac{1}{T-t_0}\frac{A_T}{X_T}\right) ^+ \right] \\&={\mathbb {E}}_{s,x,a,i}^*\left[ e^{-\delta (T-s)}\left( 1-\frac{1}{T-t_0}\frac{A_T}{X_T}\right) ^+ \right] \le 1. \end{aligned} \end{aligned}$$

where the expectation \({\mathbb {E}}^*\) is with respect to \(P^*\). The result is now clear. \(\square \)

Proof of Lemma 2.2

Following up the proof of Lemma 2.1, we have that,

$$\begin{aligned} C^0(s,x,a,i)={\mathbb {E}}_{s,x,a,i}^*\left[ e^{-\delta (T-s)}\left( x-\frac{x}{T-t_0}\frac{A_T}{X_T}\right) ^+\,\mid \, Y_t=i, \forall t\in [s,T] \right] , \end{aligned}$$

and \({\hat{B}}_u=B_u-\int _0^u\sigma (Y_s){\text {d}}s\) is a Brownian motion under \(P^*\). Here,

$$\begin{aligned} x\frac{A_T}{X_T} =\frac{x}{X_T}\left( a+\int _s^T X_u\,{\text {d}}u\right) . \end{aligned}$$

The process \((B^*_u)_{s\le u\le T}\), defined by \(B^*_u:=B^*_{s}+{\hat{B}}_{T+s-u}-{\hat{B}}_T\) with \(B^*_{s}\) a constant, is also a Brownian motion under \(P^*\) starting at \(B^*_{s}\). Now, conditional on \(X_s=x\), \(A_s=a\), and \(Y_t=i\) for all \(t\in [s,T]\),

$$\begin{aligned} \begin{aligned} \frac{x}{X_T}&=\exp \left( \sigma (i)({\hat{B}}_s-{\hat{B}}_T)+\left[ r(i)-\delta +\frac{\sigma ^2(i)}{2}\right] (s-T)\right) \\&{\mathop {=}\limits ^\mathrm{law}}\exp \left( \sigma (i)(B^*_T-B^*_s)+\left[ \delta -r(i)-\frac{\sigma ^2(i)}{2}\right] (T-s)\right) \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} x\int _s^T \frac{X_u}{X_T}&=\int _{s}^T x\exp \left( \sigma (i)({\hat{B}}_u-{\hat{B}}_T)+\left[ r(i)-\delta +\frac{\sigma ^2(i)}{2}\right] (u-T) \right) {\text {d}}u \\&{\mathop {=}\limits ^\mathrm{law}}\int _{s}^T x\exp \left( \sigma (i)(B^*_{T+s-u}-B^*_{s})+\left[ \delta -r(i)-\frac{1}{2}\sigma ^2(i)\right] (T-u) \right) {\text {d}}u \\&=\int _{s}^T x\exp \left( \sigma (i)(B^*_w-B^*_{s})+\left[ \delta -r(i)-\frac{1}{2}\sigma ^2(i)\right] (w-s) \right) {\text {d}}w \end{aligned} \end{aligned}$$

where the third equality is obtained after the change of variable \(w=T+s-u\). Therefore, \(C^0(s,x,a,i)\) is given by:

$$\begin{aligned} {\mathbb {E}}^*_{s,x,a,i}\left[ e^{-\delta (T-s)} \left( x-\frac{a}{x(T-t_0)}X_T^*-\frac{T-s}{T-t_0}\frac{1}{T-s}\int _s^T X_u^*{\text {d}}u \right) ^+\right] \end{aligned}$$

where the underlying process \(X^*\) follows:

$$\begin{aligned} {\text {d}}X^*_t=X^*_t[(\delta -r(i)){\text {d}}t+\sigma (i){\text {d}}B^*_t], \quad X^*_{s}=x, \qquad t\ge s. \end{aligned}$$

Defining the parameters \(\lambda =\frac{a}{x(T-t_0)}\) and \(\beta =\frac{T-s}{T-t_0}\) the proof is complete.

\(\square \)

Proof of Lemma 2.3

Part (i). Let \(s\le t_0\). Then

$$\begin{aligned} \begin{aligned} C_K(s,x,0,i)&\le {\mathbb {E}}_{s,x,0,i}\left[ e^{-\int _s^T r(Y_u){\text {d}}u}\frac{A_T}{T-t_0}\right] \\&\le \frac{1}{T-t_0}\int _{t_0}^T {\mathbb {E}}_{s,x,0,i}\left[ e^{-\int _s^t r(Y_u){\text {d}}u}X_t\right] {\text {d}}t \\&\le \frac{x}{T-t_0}\int _{t_0}^Te^{-\delta (t-s)}{\text {d}}t \le x. \end{aligned} \end{aligned}$$

Part(ii). Let \(s>t_0\). Then

$$\begin{aligned} \begin{aligned} C_K(s,x,a,i)&\le {\mathbb {E}}_{s,x,a,i}\left[ e^{-\int _s^T r(Y_u){\text {d}}u}\left( \frac{a+\int _s^T X_t {\text {d}}t}{T-t_0}\right) \right] \\&\le \frac{a}{T-t_0} +\left( \frac{T-s}{T-t_0}\right) \frac{1}{T-s}\int _{s}^T {\mathbb {E}}_{s,x,a,i}\left[ e^{-\int _s^t r(Y_u){\text {d}}u}X_t\right] {\text {d}}t \\&\le \frac{a}{T-t_0}+\left( \frac{T-s}{T-t_0}\right) x \le \frac{a}{T-t_0}+x. \end{aligned} \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ocejo, A. Asian option as a fixed-point. J. Fixed Point Theory Appl. 20, 93 (2018). https://doi.org/10.1007/s11784-018-0570-1

Download citation

Keywords

  • Asian option
  • Markov-modulated
  • regime-switching
  • fixed-point
  • floating-strike
  • fixed-strike
  • integrated geometric Brownian motion

Mathematics Subject Classification

  • Primary 91B70
  • 47H10
  • Secondary 60J60