Set-valued additive \(\rho \)-functional inequalities

  • Choonkil Park


In this paper, we introduce set-valued additive \(\rho \)-functional inequalities and prove the Hyers–Ulam stability of the set-valued additive \(\rho \)-functional inequalities by using the fixed point method.


Hyers–Ulam stability set-valued additive \(\rho \)-functional inequality fixed point 

Mathematics Subject Classification

47H10 54C60 39B52 47H04 91B44 



C. Park was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2017R1D1A1B04032937).

Compliance with ethical standards

Conflict of interest

The author declares that he has no competing interests.


  1. 1.
    Aczel, J., Dhombres, J.: Functional Equations in Several Variables. Cambridge University Press, Cambridge (1989)CrossRefzbMATHGoogle Scholar
  2. 2.
    Aoki, T.: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2, 64–66 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy. Econometrica 22, 265–290 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Aubin, J.P., Frankow, H.: Set-Valued Analysis. Birkhäuser, Boston (1990)Google Scholar
  5. 5.
    Aumann, R.J.: Integrals of set-valued functions. J. Math. Anal. Appl. 12, 1–12 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cardinali, T., Nikodem, K., Papalini, F.: Some results on stability and characterization of K-convexity of set-valued functions. Ann. Polon. Math. 58, 185–192 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cascales, T., Rodrigeuz, J.: Birkhoff integral for multi-valued functions. J. Math. Anal. Appl. 297, 540–560 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions, Lect. Notes in Math. Springer, Berlin (1977)CrossRefzbMATHGoogle Scholar
  9. 9.
    Cădariu, L., Radu, V.: Fixed points and the stability of Jensen’s functional equation. J. Inequal. Pure Appl. Math. 4(1), 4 (2003)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Cădariu, L., Radu, V.: On the stability of the Cauchy functional equation: a fixed point approach. Grazer Math. Ber. 346, 43–52 (2004)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Cădariu, L., Radu, V.: Fixed point methods for the generalized stability of functional equations in a single variable. Fixed Point Theory Appl. 2008, 749392 (2008)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Debreu, G.: Integration of correspondences. In: Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. II, Part I, pp. 351–372 (1966)Google Scholar
  13. 13.
    Diaz, J., Margolis, B.: A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 74, 305–309 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Eshaghi Gordji, M., Park, C., Savadkouhi, M.B.: The stability of a quartic type functional equation with the fixed point alternative. Fixed Point Theory 11, 265–272 (2010)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Eshaghi, M.: Gordji and M.B. Savadkouhi, Stability of a mixed type cubic-quartic functional equation in non-Archimedean spaces. Appl. Math. Lett. 23, 1198–1202 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gǎvruta, P.: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184, 431–436 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hess, C.: Set-valued integration and set-valued probability theory: an overview. Handbook of Measure Theory, vols. I, II. North-Holland, Amsterdam (2002)Google Scholar
  18. 18.
    Hindenbrand, W.: Core and Equilibria of a Large Economy. Princeton University Press, Princeton (1974)Google Scholar
  19. 19.
    Hyers, D.H.: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA 27, 222–224 (1941)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hyers, D.H., Isac, G., Rassias, ThM: Stability of Functional Equations in Several Variables. Birkhäuser, Basel (1998)CrossRefzbMATHGoogle Scholar
  21. 21.
    Isac, G., Rassias, T.H.: On the Hyers-Ulam stability of \(\psi \)-additive mappings. J. Approx. Theory 72, 131–137 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Isac, G., Rassias, T.H.: Stability of \(\psi \)-additive mappings: Applications to nonlinear analysis. Internat. J. Math. Math. Sci. 19, 219–228 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Khodaei, H., Rassias, T.M.: Set-valued dynamics related to generalized Euler-Lagrange functional equations. J. Fixed Point Theory Appl. 20, 20–32 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Klein, E., Thompson, A.: Theory of Correspondence. Wiley, New York (1984)Google Scholar
  25. 25.
    Lee, K.: Stability of functional equations related to set-valued functions (preprint)Google Scholar
  26. 26.
    McKenzie, L.W.: On the existence of general equilibrium for a competitive market. Econometrica 27, 54–71 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Miheţ, D., Radu, V.: On the stability of the additive Cauchy functional equation in random normed spaces. J. Math. Anal. Appl. 343, 567–572 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Mirzavaziri, M., Moslehian, M.S.: A fixed point approach to stability of a quadratic equation. Bull. Braz. Math. Soc. 37, 361–376 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Nikodem, K.: On quadratic set-valued functions. Publ. Math. Debrecen 30, 297–301 (1984)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Nikodem, K.: On Jensen’s functional equation for set-valued functions. Radovi Mat. 3, 23–33 (1987)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Nikodem, K.: Set-valued solutions of the Pexider functional equation. Funkcialaj Ekvacioj 31, 227–231 (1988)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Nikodem, K.: K-convex and K-concave set-valued functions. Zeszyty Naukowe Nr. Lodz 559, 1–75 (1989)Google Scholar
  33. 33.
    Park, C.: Fixed point method for set-valued functional equations. J. Fixed Point Theory Appl. 19, 2297–2308 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Piao, Y.J.: The existence and uniqueness of additive selection for \((\alpha, \beta )\)-\((\beta,\alpha )\) type subadditive set-valued maps. J. Northeast Norm. Univ. 41, 38–40 (2009)MathSciNetGoogle Scholar
  35. 35.
    Popa, D.: Additive selections of \((\alpha, \beta )\)-subadditive set-valued maps. Glas. Mat. Ser. III 36(56), 11–16 (2001)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Radu, V.: The fixed point alternative and the stability of functional equations. Fixed Point Theory 4, 91–96 (2003)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Rassias, T.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Rassias, T.H. (ed.): Functional Equations and Inequalities. Kluwer Academic, Dordrecht (2000)zbMATHGoogle Scholar
  39. 39.
    Rassias, ThM: On the stability of functional equations in Banach spaces. J. Math. Anal. Appl. 251, 264–284 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Rassias, T.H.: On the stability of functional equations and a problem of Ulam. Acta Math. Appl. 62, 23–130 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Ulam, S.M.: Problems in Modern Mathematics, Chap. VI, Science edn. Wiley, New York (1940)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Research Institute for Natural SciencesHanyang UniversitySeoulRepublic of Korea

Personalised recommendations