A fixed point theorem for conical shells

  • A. Domokos
  • M. M. Marsh


We prove a fixed point theorem for mappings f defined on conical shells F in \(\mathbb R^n\), where the image of f need not be a subset of F, nor even a subset of the cone that contains F. In this sense, our results extend, in \(\mathbb R^n\), Krasnosel’skiĭ’s well-known fixed point result on cones in Banach spaces (Krasnosel’skiĭ, Soviet Math Dokl 1:1285–1288, 1960). Sufficiency for fixed points of f is dependent only on the behavior of f on the boundary of F. This behavior is related to notions of compressing or extending the conical shell F. We also discuss possible extensions of our theorem to infinite dimensional Banach spaces.


Convex cone conical shell fixed point 

Mathematics Subject Classification

Primary 54H25 Secondary 55M20 54F15 



The authors wish to thank the referees for suggestions that improved the paper. In particular, we thank the referee who noticed that Theorem 3.1(2) could be strengthened to its present form.


  1. 1.
    Bowszyc, C.: Fixed point theorems for the pairs of spaces. Bull. Acad. Polon. Sci. XVI(#11), 845–850 (1968)Google Scholar
  2. 2.
    Brown, R.F.: The Lefschetz Fixed Point Theorem. Scott, Foresman and Company, Glenview (1970)Google Scholar
  3. 3.
    Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin, Heidelberg (1985)CrossRefzbMATHGoogle Scholar
  4. 4.
    Dold, A.: Fixed point index and fixed point theorem for Euclidean neighborhood retracts. Topology 4, 1–8 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dugundji, J.: An extension of Tietze’s Theorem. Pac. J. Math. 1, 353–367 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Eggleston, H.G.: Convexity. Cambridge University Press, Cambridge (1969)zbMATHGoogle Scholar
  7. 7.
    Fournier, G.: Fixed point principles for cones of linear normed space. Can. J. Math. XXXII(#6), 1372–1381 (1980)Google Scholar
  8. 8.
    Fournier, G., Peitgen, H.O.: On some fixed point principles for cones in linear normed spaces. Math. Ann. 225, 205–218 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Górniewicz, L., Granas, A.: On a theorem of C. Bowszyc concerning the relative version of the Lefschetz fixed point theorem. Bull. Inst. Math. Acad. Sin. 13(#2), 137–142 (1985)Google Scholar
  10. 10.
    Granas, A.: The Leray-Schauder Index and the fixed point theory for arbitrary ANRs. Bull. Soc. Math. Fr. 100, 209–228 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Halpern, B.R., Bergman, G.M.: A fixed point theorem for inward and outward maps. Trans. Am. Math. Soc. 130(#2), 353–358 (1968)Google Scholar
  12. 12.
    Krasnosel’skiĭ, M.A.: Fixed points of cone-compressing or cone-extending operators. Sov. Math. Dokl. 1, 1285–1288 (1960)MathSciNetGoogle Scholar
  13. 13.
    Kulpa, W.: The Poincaré-Miranda Theorem. Am. Math. Mon. 104(#6), 545–550 (1997)Google Scholar
  14. 14.
    Marsh, M.M.: Fixed point theorems for partially outward mappings. Topol. Appl. 153, 3546–3554 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Nussbaum, R.D.: Periodic solutions of some nonlinear, autonomous functional differential equations II. J. Differ. Equations 14, 360–394 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Reich, S.: On fixed point theorems obtained from existence theorems for differential equations. J. Math. Anal. Appl. 54, 26–36 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Vick, J.W.: Homology Theory, An Introduction to Algebraic Topology. Springer, New York (1994)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsCalifornia State University, SacramentoSacramentoUSA

Personalised recommendations