Skip to main content
Log in

Dynamical and proximal approaches for approximating fixed points of quasi-nonexpansive mappings

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we derive some weak and strong convergence results for a nonhomogeneous differential equation with a Lipschitz quasi-nonexpansive mapping. We also consider a discrete version that provides an iterative algorithm for approximating a fixed point of the mapping. We state some weak and strong convergence results related to this algorithm. Finally, we compare this algorithm with the classical algorithms for approximating fixed points of quasi-nonexpansive mappings, and show the advantage of the proposed algorithm via convergence rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmadi, P., Khatibzadeh, H.: Convergence and rate of convergence of a non-autonmous gradient system on Hadamard manifold. Lobachevskii J. Math. 35, 165–171 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahmadi, P., Khatibzadeh, H.: Long time behavior of quasi-convex and pseudo-convex gradient systems on Riemannian manifolds. Filomat 31, 4571–4578 (2017)

    Article  MathSciNet  Google Scholar 

  3. Baillon, J.B.: Un exemple concernant le comportement asymptotique de la solution du problème \(du/dt+\partial \varphi (u)\ni 0\). J. Funct. Anal. 28, 369–376 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baillon, J.B., Brézis, H.: Une remarque sur le comportement asymptotique des semi-groupes non linéaires. Houston J. Math. 2, 5–7 (1976)

    MathSciNet  MATH  Google Scholar 

  5. Baillon, J.B., Bruck, R.E., Reich, S.: On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces. Houst. J. Math. 4, 1–9 (1978)

    MathSciNet  MATH  Google Scholar 

  6. Brézis, H., Lions, P.L.: Produits infinis derésolvantes. Isr. J. Math. 29, 329–345 (1978)

    Article  MATH  Google Scholar 

  7. Bruck, R.E.: Asymptotic convergence of nonlinear contraction semigroups in Hilbert space. J. Func. Anal. 18, 15–26 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bruck, R.E., Reich, S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houst. J. Math. 3, 459–470 (1977)

    MathSciNet  MATH  Google Scholar 

  9. Djafari Rouhani, B., Khatibzadeh, H.: On the proximal point algorithm. J. Optim. Theory Appl. 137, 411–417 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goudou, X., Munier, J.: The gradient and heavy ball with friction dynamical systems: the quasiconvex case. Math. Progr. Ser. B 116, 173–191 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403–419 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Khatibzadeh, H.: Some remarks on the proximal point algorithm. J. Optim. Theory Appl. 153, 769–778 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Khatibzadeh, H., Mohebbi, V.: Non-homogeneous continuous and discrete gradient systems: the quasi-convex case. Bull. Iran. Math. Soc. (preprint)

  14. Maiti, M., Ghosh, M.K.: Approximating fixed points by Ishikawa iterates. Bull. Austral. Math. Soc. 40, 113–117 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Morosanu, G.: Nonlinear Evolution Equations and Applications, vol. 26. Reidel, Dordrech (1988)

    MATH  Google Scholar 

  16. Nevanlinna, O., Reich, S.: Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces. Isr. J. Math. 32, 44–58 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Opial, Z.: Weak convergence of the sequence of successive approximation for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  18. Park, J.Y., Jeong, J.U.: Weak convergence to a fixed point of the sequence of Mann type iterates. J. Math. Anal. Appl. 184, 75–81 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pazy, A.: On the asymptotic behavior of semigroups of nonlinear contractions in Hilbert space. J. Funct. Anal. 27, 292–307 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referee for his/her very careful reading of the manuscript and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Khatibzadeh.

Additional information

This work was completed with the support of our TeX-pert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatibzadeh, H., Piranfar, M.R. & Rooin, J. Dynamical and proximal approaches for approximating fixed points of quasi-nonexpansive mappings. J. Fixed Point Theory Appl. 20, 65 (2018). https://doi.org/10.1007/s11784-018-0539-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11784-018-0539-0

Keywords

Mathematics Subject Classification

Navigation