Skip to main content
Log in

A new contraction condition and its application to weakly singular Volterra integral equations of the second kind

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we prove some results concerning the existence and uniqueness of solutions for a large class of nonlinear Volterra integral equations of the second kind, especially singular Volterra integral equations, in the Banach space \(X:=C([0,1])\) consisting of real functions defined and continuous on the interval [0, 1]. The main idea used in the proof is that by using a new contraction condition we can construct a Cauchy sequence in the complete metric space X such that it is convergent to a unique element of this space. Finally, we present some examples of nonlinear singular integral equations of Volterra type to show the efficiency of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, R.P., Benchohra, M., Seba, D.: On the application of measure of noncompactness to the existence of solutions for fractional differential equations. Results Math. 55, 221–230 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aghajani, A., Banas, J., Jalilian, Y.: Existence of solutions for a class of nonlinear Volterra singular integral equations. Comput. Math. Appl. 62, 1215–1227 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baghani, O., Gachpazan, M., Baghani, H.: Existence, uniqueness and stability of solutions for a class of nonlinear integral equations under generalized Lipschitz condition. Indian J. Pure Appl. Math. 43, 309–321 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Banas, J., Lecko, M., Sayed, W.G.: Existence theorems for some quadratic integral equations. J. Math. Anal. Appl. 222, 276–285 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Benitez, R., Bolos, V.J.: Existence and uniqueness of nontrivial collocation solutions of implicitly linear homogeneous Volterra integral equations. J. Comput. Appl. Math. 235, 3661–3672 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bozkaya, C., Sezgin, M.T.: Boundary element solution of unsteady magnetohydrodynamic duct flow with differential quadrature time integration scheme. Int. J. Numer. Meth. Fluids 51, 567–584 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bresch, D., Desjardins, B., Grenier, E.: Singular ordinary differential equations homogeneous of degree 0 near a codimension 2 set. Proc. Am. Math. Soc. 140, 1697–1704 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brunner, H.: Collocation methods for Volterra integral and related functional differential equations. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  9. Brunner, H.: The numerical solutions of weakly singular Volterra integral equations by collocation on graded meshes. Math. Comp. 45, 417–437 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brunner, H.: Nonpolynomial spline collocation for Volterra equations with weakly singular kernels. SIAM J. Numer. Anal. 20, 1106–1119 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen, Z., Lin, Y.: The exact solution of a linear integral equation with weakly singular kernel. J. Math. Anal. Appl. 344, 726–734 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen, Y., Tang, T.: Spectral methods for weakly singular Volterra integral equations with smooth solutions. J. Comput. Appl. Math. 233, 938–950 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen, Z., Zhou, Y.F.: An efficient algorithm for solving Hilbert type singular integral equations of the second kind. Comput. Math. Appl. 58, 632–640 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Darwish, M.A., Ntouyas, S.K.: Monotonic solutions of a perturbed quadratic fractional integral equation. Nonlinear Anal. 71, 5513–21 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Deng, J., Ma, L.: Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations. Appl. Math. Lett. 23, 676–680 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Diogo, T.: Collocation and iterated collocation methods for a class of weakly singular Volterra integral equations. J. Comput. Appl. Math. 229, 363–372 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Estrada, R., Kanwal, R.P.: Singular integral equations. Brikhauser, Boston (1999)

    MATH  Google Scholar 

  18. Ghachpazan, M., Baghani, O.: A stopping rule for an iterative algorithm in systems of integral equations. Comp. Appl. Math. 33, 325–332 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hashmi, M.S., Khan, N., Iqbal, S.: Numerical solutions of weakly singular Volterra integral equations using the optimal homotopy asymptotic method. Comput. Math. Appl. 64, 1567–1574 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hussain, S., Latif, M.A., Alomari, M.: Generalized double-integral Ostrowski type inequalities on time scales. Appl. Math. Lett. 24, 1461–1467 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lifanov, I.K., Poltavskii, L.N., Vainikko, G.M.: Hypersingular integral equations and their applications. CRC Press, LLC (2004)

    MATH  Google Scholar 

  22. Luchko, Y.: Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation. Comput. Math. Appl. 59, 1766–177 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mainardi, F., Gorenflo, R.: On Mittag-Leffler type functions in fractional evolution processes. J. Comput. Appl. Math. 118, 283–299 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Maleknejad, K., Nouri, K., Mollapourasl, R.: Existence of solutions for some nonlinear integral equations. Commun. Nonlinear Sci. Numer. Simulat. 14, 2559–2564 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Maleknejad, K., Nouri, K., Mollapourasl, R.: Investigation on the existence of solutions for some nonlinear functional-integral equations. Nonlinear Anal. 71, 1575–1578 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Manam, S.R.: Multiple integral equations arising in the theory of water waves. Appl. Math. Lett. 24, 1369–1373 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mandal, B.N., Chakrabarti, A.: Applied singular integral equations. CRC Press, Science Publishers, USA (2011)

    MATH  Google Scholar 

  28. Muskhelishvilli, N.I.: Singular Integral Equations: Boundary problems of function theory and their applications to mathematical physics. Dover Publications, USA (1992)

    Google Scholar 

  29. O’Regan, D., Agarwal, R.P., Perera, K.: Nonlinear integral equations singular in the dependent variable. Appl. Math. Lett. 20, 1137–1141 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. O’Regan, D., Meehan, M.: Existence theory for nonlinear integral and integro differential equations. Kluwer Academic, Dordrecht (1998)

    Book  MATH  Google Scholar 

  31. Phuong Ngoca, L.T., Long, N.T.: Applying a fixed point theorem of Krasnoselskii type to the existence of asymptotically stable solutions for a Volterra-Hammerstein integral equation. Nonlinear Anal. 74, 3769–3774 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. Reich, S., Zaslavski, A.J.: A convergence theorem for asymptotic contractions. J. Fixed Point Theory Appl. 4, 27–33 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  33. Eshaghi Gordji, M., Baghani, H., Baghani, O.: On existence and uniqueness of solutions of a nonlinear integral equation, J. Appl. Math. (2011) Article ID 743923

  34. Zhou, W.X., Chu, Y.D.: Existence of solutions for fractional differential equations with multi-point boundary conditions. Commun. Nonlinear Sci. Numer. Simulat. 17, 1142–1148 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee(s) for careful corrections, which helped them to improve the manuscript. They would like to express hearty thanks to the associate editor, Prof. Simeon Reich, for his support during the review process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Baghani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghani, O., Baghani, H. A new contraction condition and its application to weakly singular Volterra integral equations of the second kind. J. Fixed Point Theory Appl. 19, 2601–2615 (2017). https://doi.org/10.1007/s11784-017-0445-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-017-0445-x

Keywords

Mathematics Subject Classification

Navigation