Skip to main content
Log in

The weakest contractive conditions for Edelstein’s mappings to have a fixed point in complete metric spaces

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we give the answer to the following problem: Let (Xd) be a complete metric space and let T be a mapping on X satisfying \(d(Tx, Ty) < d(x, y)\) for any \(x, y \in X\) with \(x \ne y\). Then what are the weakest additional assumptions to imply the same conclusion as in the Banach contraction principle?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 3, 133–181 (1922)

    Article  MATH  Google Scholar 

  2. Bogin, J.: A generalization of a fixed point theorem of Goebel, Kirk and Shimi. Can. Math. Bull. 19, 7–12 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boyd, D.W., Wong, J.S.W.: On nonlinear contractions. Proc. Am. Math. Soc. 20, 458–464 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  4. Caccioppoli, R.: Un teorema generale sull’esistenza di elementi uniti in una transformazione funzionale. Rend. Accad. Naz. Lincei 11, 794–799 (1930)

    MATH  Google Scholar 

  5. Ćirić, L.B.: A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 45, 267–273 (1974)

    MATH  MathSciNet  Google Scholar 

  6. Ćirić, L.B.: A new fixed-point theorem for contractive mappings. Publ. Inst. Math. (Beograd) 30, 25–27 (1981)

    MATH  MathSciNet  Google Scholar 

  7. Edelstein, M.: On fixed and periodic points under contractive mappings. J. Lond. Math. Soc. 37, 74–79 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  9. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  10. Jachymski, J.: Equivalent conditions and the Meir–Keeler type theorems. J. Math. Anal. Appl. 194, 293–303 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jachymski, J.: Around Browder’s fixed point theorem for contractions. J. Fixed Point Theory Appl. 5, 47–61 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kuczma, M., Choczewski, B., Ger, R.: Iterative Functional Equations. Encyclopedia of Mathematics and its Applications, vol. 32. Cambridge, Cambridge University Press (1990)

    Book  MATH  Google Scholar 

  13. Leader, S.: Equivalent Cauchy sequences and contractive fixed points in metric spaces. Stud. Math. 76, 63–67 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  14. Matkowski, J.: Integrable solutions of functional equations. Instytut Matematyczny Polskiej Akademi Nauk, Warszawa, vol. 127 (1975)

  15. Matkowski, J.: Fixed point theorems for contractive mappings in metric spaces. Časopis Pěst. Mat. 105, 341–344 (1980)

    MATH  MathSciNet  Google Scholar 

  16. Meir, A., Keeler, E.: A theorem on contraction mappings. J. Math. Anal. Appl. 28, 326–329 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nadler Jr., S.B.: Multi-valued contraction mappings. Pac. J. Math. 30, 475–488 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  18. Proĭnov, P.D.: Fixed point theorems in metric spaces. Nonlinear Anal. 64, 546–557 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Reich, S.: Some remarks concerning contraction mappings. Can. Math. Bull. 14, 121–124 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rus, I.A.: The method of successive approximations. Rev. Roum. Math. Pure Appl. 17, 1433–1437 (1972)

    MathSciNet  Google Scholar 

  21. Subrahmanyam, P.V.: Remarks on some fixed point theorems related to Banach’s contraction principle. J. Math. Phys. Sci. 8, 445–457 (1974)

    MATH  MathSciNet  Google Scholar 

  22. Suzuki, T.: Generalized distance and existence theorems in complete metric spaces. J. Math. Anal. Appl. 253, 440–458 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Suzuki, T.: A generalized Banach contraction principle that characterizes metric completeness. Proc. Am. Math. Soc. 136, 1861–1869 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Suzuki, T.: Comments on some recent generalization of the Banach contraction principle. J. Inequal. Appl. 2016, 111 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  25. Suzuki, T., Alamri, B.: A sufficient and necessary condition for the convergence of the sequence of successive approximations to a unique fixed point II. Fixed Point Theory Appl. 2015, 59 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  26. Suzuki, T., Kikkawa, M.: Generalizations of both Ćirić’s and Bogin’s fixed point theorems. J. Nonlinear Convex Anal. 17, 2183–2196 (2016)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is very grateful to the referee for his/her careful reading.

Compliance with ethical standards

Conflict of interest The author declares that he has no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomonari Suzuki.

Additional information

The author is supported in part by JSPS KAKENHI Grant Number 16K05207 from Japan Society for the Promotion of Science.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, T. The weakest contractive conditions for Edelstein’s mappings to have a fixed point in complete metric spaces. J. Fixed Point Theory Appl. 19, 2361–2368 (2017). https://doi.org/10.1007/s11784-017-0430-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-017-0430-4

Mathematics Subject Classification

Keywords

Navigation