1 Erratum to: J. Fixed Point Theory Appl. (2017) 19:649–690 DOI 10.1007/s11784-016-0369-x

In the latter part of [2, Proposition 3.6 (i)], it is claimed that any weak solution of

$$\begin{aligned} (1-\Delta )^\alpha u = f(u) \quad \hbox {in} \ \mathbf {R}^N,\qquad u \in H^\alpha (\mathbf {R}^N)\end{aligned}$$

decays faster than any polynomial. However, the proof there is valid only for positive solutions since the function \(g(x) :=( f(u(x)) - (1-\delta _0) u(x))_+\) may not be compactly supported.

We shall modify the proof and show the decay estimate of any weak solution of

$$\begin{aligned} (1-\Delta )^\alpha u = f(x,u) \quad \hbox {in} \ \mathbf {R}^N, \qquad u \in H^\alpha (\mathbf {R}^N). \end{aligned}$$
(1)

Proposition 0.1

Let \(f \in C(\mathbf {R}^N\times \mathbf {R}, \mathbf {R})\) satisfy \(|f(x,s)| \le C(|s| + |s|^{2^*_\alpha -1} )\) for each \((x,s) \in \mathbf {R}^N\times \mathbf {R}\) and

$$\begin{aligned} \limsup _{s\rightarrow 0} \sup _{x \in \mathbf {R}^N} \frac{f(x,s)}{s} < 1. \end{aligned}$$
(2)

Then for every weak solution u of (1) and every \(k \in \mathbf {N},\) there exists a \(C_{k,u}\) such that \(|u(x)| \le C_{k,u}(1+|x|)^{-k}\) for all \(x \in \mathbf {R}^N\).

We first introduce the extension problem (see [1]):

$$\begin{aligned} \left\{ \begin{array}{ll} t^{1-2\alpha } (-\Delta _x + 1) w - (t^{1-2\alpha } w_t)_t=0&{}\quad \hbox {in} \ \mathbf {R}^{N+1}_+,\\ w=u&{}\quad \hbox {on} \ \partial \mathbf {R}^{N+1}_+\end{array} \right. \end{aligned}$$
(3)

where \(\Delta _x = \sum _{i=1}^N \partial _{x_i}^2\). We also set

$$\begin{aligned}&X^\alpha := \{w : \mathbf {R}^{N+1}_+\rightarrow \mathbf {R}\mid \Vert w \Vert _{X^\alpha } < \infty \},\\&\quad \Vert w \Vert _{X^\alpha }^2 := \int _{\mathbf {R}^{N+1}_+} t^{1-2 \alpha } \left( |\nabla w|^2 + w^2 \right) \mathrm {d}X, \quad X := (x,t) \end{aligned}$$

where \(\nabla = (\nabla _x, \partial _t)\). Recall [2, Proposition 5.2]:

Proposition 0.2

  1. (i)

    There exists the trace operator \(\mathrm{Tr}: X^\alpha \rightarrow H^\alpha (\mathbf {R}^N)\).

  2. (ii)

    For each \( u \in H^\alpha (\mathbf {R}^N),\) there is a unique solution \(Eu \in X^\alpha \) of (3). In addition,  there is a constant \(\kappa _\alpha > 0\) so that

    $$\begin{aligned} \kappa _\alpha \left\langle u, \mathrm{Tr\,}w \right\rangle _\alpha = \int _{\mathbf {R}^{N+1}_+} t^{1-2\alpha } (\nabla (Eu) \cdot \nabla w + (Eu) w)\,\mathrm {d}X \end{aligned}$$

    for every \(u \in H^\alpha (\mathbf {R}^N)\) and \(w \in X^\alpha \).

  3. (iii)

    For each \(u \in H^\alpha (\mathbf {R}^N)\) and \(w \in X^\alpha \) with \(\mathrm{Tr\,}w = u,\) \(\kappa _\alpha \Vert u \Vert _\alpha ^2 = \Vert Eu \Vert _{X^\alpha }^2 \le \Vert w \Vert _{X^\alpha }^2\) hold.

Now we prove Proposition 0.1:

Proof of Proposition 0.1

Let u be a weak solution of (1). By (2), we may choose \(s_0>0\) and \(\delta _0>0\) such that

$$\begin{aligned} \frac{f(x,s)}{s} < 1 - 2\delta _0 \quad \hbox {for any }(x,s) \in \mathbf {R}^N\times ([-s_0,s_0] \setminus \{0\}). \end{aligned}$$

From the former part of the proof of [2, Proposition 3.6 (i)], we see that \(u \in C^{\beta }_\mathrm{b}(\mathbf {R}^N)\) for any \( \beta \in (0,2\alpha )\) and \(u(x) \rightarrow 0\) as \(|x| \rightarrow \infty \). Hence, we may choose an \(R_0>0\) such that

$$\begin{aligned} |x| \ge R_0, \ u(x) \ne 0 \quad \Rightarrow \quad \frac{f(x,u(x))}{u(x)} \le 1 - \delta _0. \end{aligned}$$
(4)

Denote by \(\chi _{R_0}(x)\) the characteristic function of \(B_{R_0}(0)\). Notice that \(\chi _{R_0}(x) | f(x,u(x)) | \in L^2(\mathbf {R}^N) \cap L^\infty (\mathbf {R}^N)\) is compactly supported. Let v be a unique solution of

$$\begin{aligned} (1-\Delta )^\alpha v - (1-\delta _0) v = \chi _{R_0}(x) | f(x,u(x)) | \quad \hbox {in} \ \mathbf {R}^N, \quad v \in H^\alpha (\mathbf {R}^N). \end{aligned}$$

Then [2, Proposition 5.1] asserts that for any \(k \in \mathbf {N}\) there is a \(c_k>0\) so that

$$\begin{aligned} 0< v(x) \le c_k (1 + |x|)^{-k} \quad \hbox {for all }x \in \mathbf {R}^N. \end{aligned}$$

Therefore, it suffices to prove \(-v(x) \le u(x) \le v(x)\) for all \(x \in \mathbf {R}^N\).

To this end, remark that u satisfies

$$\begin{aligned} (1-\Delta )^\alpha u = \chi _{R_0}(x) f(x,u(x)) + (1-\chi _{R_0}(x)) f(x,u(x)) \quad \hbox {in }\mathbf {R}^N. \end{aligned}$$

Setting \(U(x) := v(x) - u(x)\), one finds that

$$\begin{aligned} (1-\Delta )^\alpha U= & {} \chi _{R_0}(x) \{|f(x,u(x))| - f(x,u(x))\}\\&+\,\{-(1-\chi _{R_0}(x)) f(x,u(x)) + (1-\delta _0) v(x)\}. \end{aligned}$$

Now consider EU and \((EU)_-\) where \(w_-(X) := \max \{ 0, -w(X) \}\). It is easily seen that \((EU)_- \in X^\alpha \) and \(\mathrm{Tr\,}(EU)_- = U_-\). Applying Proposition 0.2, we get

$$\begin{aligned}&\kappa _\alpha \left\langle U, U_- \right\rangle _\alpha \\&\quad = \int _{\mathbf {R}^N} t^{1-2\alpha } ( \nabla EU \cdot \nabla (EU)_- + (EU) (EU)_-)\,\mathrm {d}X = - \Vert (EU)_- \Vert _{X^\alpha }^2. \end{aligned}$$

On the other hand,

$$\begin{aligned} \kappa _\alpha \left\langle U, U_- \right\rangle _\alpha= & {} \kappa _\alpha \int _{\mathbf {R}^N} \left[ \chi _{R_0} \left\{ |f(x,u)| - f(x,u) \right\} \right. \nonumber \\&\left. +\left\{ -(1-\chi _{R_0}) f(x,u) + (1-\delta _0) v \right\} \right] U_- \mathrm {d}x \nonumber \\\ge & {} \kappa _\alpha \int _{\mathbf {R}^N} (1-\chi _{R_0}) \left[ - f(x,u) + (1-\delta _0) v \right] U_- \mathrm {d}x. \end{aligned}$$
(5)

If \(U_-(x) > 0\) and \(|x| \ge R_0\), then from \(u(x)> v(x) > 0\) and (4) it follows that

$$\begin{aligned}&(1-\chi _{R_0}(x)) \left[ - f(x,u(x)) + (1-\delta _0) v(x) \right] \nonumber \\&\quad \ge (1-\chi _{R_0}(x)) \left[ - (1-\delta _0) u(x) + (1-\delta _0) v(x) \right] \\&\quad = (1-\delta _0) (1-\chi _{R_0}(x)) U(x). \end{aligned}$$

Hence,

$$\begin{aligned} \kappa _\alpha \int _{\mathbf {R}^N} (1-\chi _{R_0}) \left[ - f(x,u) + (1-\delta _0) v \right] U_- \mathrm {d}x \ge - (1-\delta _0) \kappa _\alpha \Vert U_- \Vert _{L^2}^2. \end{aligned}$$
(6)

Next, by the Plancherel theorem and Proposition 0.2, one sees

$$\begin{aligned} \kappa _\alpha \Vert U_- \Vert ^2_{L^2} = \kappa _\alpha \int _{\mathbf {R}^N} |\widehat{U_-} |^2 \mathrm {d}\xi \le \kappa _\alpha \Vert U_- \Vert _\alpha ^2 \le \Vert (EU)_- \Vert _{X^\alpha }^2. \end{aligned}$$

Combining this with (4)–(6), we finally obtain

$$\begin{aligned} - \Vert (EU)_- \Vert _{X^\alpha }^2 \ge - (1-\delta _0) \Vert (EU)_- \Vert _{X^\alpha }^2, \end{aligned}$$

which implies \((EU)_- \equiv 0\), hence, \(U_- \equiv 0\) and \(u(x) \le v(x) \).

For the opposite inequality \(-v(x) \le u(x)\), we proceed similarly. Set \(V(x) := v(x) + u(x)\). Then we have

$$\begin{aligned} - \Vert (EV)_- \Vert _{X^\alpha }^2= & {} \kappa _\alpha \left\langle V, V_- \right\rangle _\alpha \\\ge & {} \kappa _\alpha \int _{\mathbf {R}^N} (1-\chi _{R_0} (x) ) \left[ f(x,u(x)) + (1-\delta _0) v(x) \right] V_-(x) \mathrm {d}x. \end{aligned}$$

If \(V_-(x) > 0\) and \(|x| \ge R_0\), then \(u(x)< -v (x) < 0\). Thus, by (4), one gets

$$\begin{aligned}&(1-\chi _{R_0} (x) ) \left[ f(x,u(x)) + (1-\delta _0) v(x) \right] \\&\quad \ge (1-\chi _{R_0} (x) ) \left[ (1-\delta _0) u(x) + (1-\delta _0) v(x) \right] \\&\quad = (1-\delta _0) (1-\chi _{R_0}(x))V(x). \end{aligned}$$

The rest of the argument is same as the above and we obtain \(V_- \equiv 0\). Thus, \( - v(x) \le u(x)\) holds and we complete the proof. \(\square \)