Skip to main content
Log in

An approach to best proximity points results via simulation functions

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript


In this paper, we investigate of the existence of the best proximity points of certain mapping defined via simulation functions in the frame of complete metric spaces. We consider the uniqueness criteria for such mappings. The obtained results unify a number of the existing results on the topic in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Bilgili, N., Karapınar, E., Samet, B.: Generalized \(\alpha -\psi -\)contractive mappings in quasi-metric spaces and related fixed-point theorems. J. Inequal. Appl. 2014, 36 (2014)

  2. Jleli, M., Karapınar, E., Samet, B.: Best proximity points for generalized \(\alpha -\psi \)-proximal contractive type mappings. J. Appl. Math. 2013, 10 pages. doi:10.1155/2013/534127 (2013) (Article ID 534127)

  3. Khojasteh, F., Shukla, S., Radenović, S.: A new approach to the study of fixed point theorems via simulation functions. Filomat 29(6), 118971194 (2015)

    Article  Google Scholar 

  4. Roldán-López-de-Hierro, A.F., Karapınar, E., Roldán-López-de-Hierro, C., Martínez-Moreno, J.: Coincidence point theorems on metric spaces via simulation functions. J. Comput. Appl. Math. 275, 345–355 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Argoubi, H., Samet, B., Vetro, C.: Nonlinear contractions involving simulation functions in a metric space with a partial order. J. Nonlinear Sci. Appl. 8, 108271094 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Samet, B.: Best proximity point results in partially ordered metric spaces via simulation functions. Fixed Point Theory Appl. 2015, 232 (2015)

    Article  MATH  Google Scholar 

  7. Samet, B., Vetro, C., Vetro, P.: Fixed point theorem for \(\alpha -\psi \) contractive type mappings. Nonlinear Anal. 75, 2154–2165 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Karapınar, E., Kuman, P., Salimi, P.: On \(\alpha -\psi \)-Meri-Keeler contractive mappings. Fixed Point Theory Appl. 2013, 94 (2013)

    Article  Google Scholar 

  9. Karapinar, E., Alsulami, H.H., Noorwali, M.: Some extensions for Geragthy type contractive mappings. J. Inequal. Appl. 2015, 303 (2015)

  10. Karapinar, E., Kumam, P., Salimi, P.: On \(\alpha -\psi \)-Meir-Keeler contractive mappings. Fixed Point Theory Appl. 2013, 94 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Karapinar, E., Samet, B.: Fixed point theorems for generalized \(\alpha -\psi \) contractive type mappings and applications. Abstr. Appl. Anal. 2012, 17 pages (2012) (Article ID 793486)

  12. Karapinar, E.: Fixed points results via simulation functions. Filomat (in press)

  13. Alsulami, H.H., Karapınar, E., Khojasteh, F., Roldán-López-de-Hierro A.F.: A proposal to the study of contractions in quasi-metric spaces. Discrete Dyn. Nat. Soc., 10 pages (2014) (Article ID 269286)

  14. Radenović, S., Kadelburg, Z., Jandrlić, D., Jandrlić, A.: Some results on weak contraction maps. Bull. Iran. Math. Soc. 38(3), 625–645 (2012)

    MATH  Google Scholar 

  15. Altun, I., Al Arifi, N., Jleli, M., Lashin, A., Sametd, B.: A new concept of \((\alpha , F_d)\)-contraction on quasi metric space. J. Nonlinear Sci. Appl. 9, 3354–3361 (2016)

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Erdal Karapınar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karapınar, E., Khojasteh, F. An approach to best proximity points results via simulation functions. J. Fixed Point Theory Appl. 19, 1983–1995 (2017).

Download citation

  • Published:

  • Issue Date:

  • DOI:


Mathematics Subject Classification