Skip to main content
Log in

Spiked solutions for Schrödinger systems with Sobolev critical exponent: the cases of competitive and weakly cooperative interactions

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper we deal with the nonlinear Schrödinger system

$$\begin{aligned} -\Delta u_i =\mu _i u_i^3 + \beta u_i \sum _{j\ne i} u_j^2 + \lambda _i u_i, \qquad u_1,\ldots , u_m\in H^1_0(\Omega ) \end{aligned}$$

in dimension 4, a problem with critical Sobolev exponent. In the competitive case (\(\beta <0\) fixed or \(\beta \rightarrow -\infty \)) or in the weakly cooperative case (\(\beta \ge 0\) small), we construct, under suitable assumptions on the Robin function associated to the domain \(\Omega \), families of positive solutions which blowup and concentrate at different points as \(\lambda _1,\ldots , \lambda _m\rightarrow 0\). This problem can be seen as a generalization for systems of a Brezis–Nirenberg type problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhmediev, N.: Partially coherent solitons on a finite background. Phys. Rev. Lett. 82(13), 2661–2664 (1999)

    Article  Google Scholar 

  2. Ambrosetti, A., Colorado, E.: Standing waves of some coupled nonlinear Schrödinger equations. J. Lond. Math. Soc. (2) 75(1), 67–82 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ayed, M.B., Mehdi, K.E., Pacella, F.: Blow-up and symmetry of sign-changing solutions to some critical elliptic equations. J. Differ. Equ. 230(2), 771–795 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartsch, T., Micheletti, A.M., Pistoia, A.: On the existence and the profile of nodal solutions of elliptic equations involving critical growth. Calc. Var. Partial Differ. Equ. 26(3), 265–282 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bianchi, G., Egnell, H.: A note on the Sobolev inequality. J. Funct. Anal. 100(1), 18–24 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36(4), 437–477 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Castro, A., Clapp, M.: The effect of the domain topology on the number of minimal nodal solutions of an elliptic equation at critical growth in a symmetric domain. Nonlinearity 16(2), 579 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Z., Lin, C.-S.: Asymptotic behavior of least energy solutions for a critical elliptic system. Int. Math. Res. Not. 21, 11045–11082 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Z., Lin, C.-S., Zou, W.: Sign-changing solutions and phase separation for an elliptic system with critical exponent. Commun. Partial Differ. Equ. 39(10), 1827–1859 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, Z., Zou, W.: Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent. Arch. Ration. Mech. Anal. 205(2), 515–551 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, Z., Zou, W.: Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: higher dimensional case. Calc. Var. Partial Differ. Equ. 52(1), 423–467 (2015)

    Article  MATH  Google Scholar 

  12. Correia, S., Oliveira, F., Tavares, H.: Semitrivial vs. fully nontrivial ground states in cooperative cubic Schrödinger systems with \(d\ge 3\) equations. J. Funct. Anal. 271, 2247–2273 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Han, Z.-C.: Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire 8(2), 159–174 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Iacopetti, A., Vaira, G.: Sign-changing blowing-up solutions for the Brezis–Nirenberg problem in dimensions four and five (2015). arXiv:1504.05010 (Preprint)

  15. Li, Y.: On a singularly perturbed elliptic equation. Adv. Differ. Equ. 2(6), 955–980 (1997)

    MathSciNet  MATH  Google Scholar 

  16. Lin, T.-C., Wei, J.: Erratum: “Ground state of \(N\) coupled nonlinear Schrödinger equations in \({\bf R}^n\), \(n\le 3\)”. Comm. Math. Phys. 277(2):573–576 [Comm. Math. Phys. 255(3), 629–653 (2005); MR2135447]

  17. Lin, T.-C., Wei, J.: Ground state of \(N\) coupled nonlinear Schrödinger equations in \({\mathbf{R}}^n\), \(n\le 3\). Commun. Math. Phys. 255(3), 629–653 (2005)

    Article  MATH  Google Scholar 

  18. Maia, L.A., Montefusco, E., Pellacci, B.: Positive solutions for a weakly coupled nonlinear Schrödinger system. J. Differ. Equ. 229(2), 743–767 (2006)

    Article  MATH  Google Scholar 

  19. Mandel, R.: Minimal energy solutions for cooperative nonlinear Schrödinger systems. NoDEA Nonlinear Differ. Equ. Appl. 22(2), 239–262 (2015)

    Article  MATH  Google Scholar 

  20. Micheletti, A.M., Pistoia, A.: On the effect of the domain geometry on the existence of sign changing solutions to elliptic problems with critical and supercritical growth. Nonlinearity 17(3), 851–866 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Micheletti, A.M., Pistoia, A.: Non degeneracy of critical points of the Robin function with respect to deformations of the domain. Potential Anal. 40(2), 103–116 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Musso, M., Pistoia, A.: Multispike solutions for a nonlinear elliptic problem involving the critical Sobolev exponent. Indiana Univ. Math. J. 51(3), 541–579 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Noris, B., Terracini, S., Tavares, H., Verzini, G.: Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Commun. Pure Appl. Math. 63(3), 267–302 (2010)

    Article  MATH  Google Scholar 

  24. Oliveira, F., Tavares, H.: Ground states for a nonlinear Schrödinger system with sublinear coupling terms. Adv. Nonlinear Stud. 16(2), 381–387 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pistoia, A.: The Ljapunov-Schmidt reduction for some critical problems. In: Concentration analysis and applications to PDE–ICTS Workshop. Bangalore, January 2012, Trends in Mathematics, pp. 69–83. Springer, Basel (2013)

  26. Rey, O.: Proof of two conjectures of H. Brézis and L. A. Peletier. Manuscr. Math. 65(1), 19–37 (1989)

    Article  MATH  Google Scholar 

  27. Rey, O.: The role of the Green’s function in a nonlinear elliptic equation involving the critical Sobolev exponent. J. Funct. Anal. 89(1), 1–52 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. Soave, N.: On existence and phase separation of solitary waves for nonlinear Schrödinger systems modelling simultaneous cooperation and competition. Calc. Var. Partial Differ. Equ. 53(3), 689–718 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Soave, N., Tavares, H.: New existence and symmetry results for least energy positive solutions of Schrödinger systems with mixed competition and cooperation terms. J. Differ. Equ. 261(1), 505–537 (2016)

    Article  MATH  Google Scholar 

  30. Soave, N., Tavares, H., Terracini, S., Zilio, A.: Hölder bounds and regularity of emerging free boundaries for strongly competing schrödinger equations with nontrivial grouping. Nonlinear Anal. Theory Methods Appl. 138, 388–427 (2016). (Nonlinear Partial Differential Equations, in honor of Juan Luis Vázquez for his 70th birthday)

    Article  MATH  Google Scholar 

  31. Soave, N., Zilio, A.: Uniform bounds for strongly competing systems: the optimal Lipschitz case. Arch. Ratio. Mech. Anal. 218(2), 647–697 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Timmermans, E.: Phase separation of Bose–Einstein condensates. Phys. Rev. Lett. 81(26), 5718–5721 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

Angela Pistoia was supported by GNAMPA and Sapienza Fondi di Ricerca. Hugo Tavares was partially supported by Fundação para a Ciência e Tecnologia through the program Investigador FCT and the project PEst-OE/EEI/-LA0009/2013, as well as by the ERC Advanced Grant 2013 N.339958 “Complex Patterns for Strongly Interacting Dynamical Systems—COMPAT”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Tavares.

Additional information

Dedicated to Prof. Paul Rabinowitz, with profound esteem and admiration.

Appendix A: Auxiliary estimates

Appendix A: Auxiliary estimates

We start by recalling here the notations

$$\begin{aligned}&U_{\delta ,\xi }(x)=c_4\frac{\delta }{\delta ^2+|x-\xi |^2},\qquad \psi ^0_{\delta ,\xi }=\delta \frac{\partial U_{\delta ,\xi }}{\partial \delta } \quad \text {and} \qquad \\&\quad \psi ^j_{\delta ,\xi }=\delta \frac{\partial U_{\delta ,\xi }}{\partial \xi _j},\ j=1,\ldots , 4. \end{aligned}$$

Lemma A.1

Given any \(K\Subset \Omega \subset \mathbb {R}^4\), we have

$$\begin{aligned} PU_{\delta ,\xi }=U_{\delta ,\xi }-\delta A H(\cdot ,\xi )+R_{\delta ,\xi }, \end{aligned}$$
(A.1)

with

$$\begin{aligned} \Vert R_{\delta ,\xi }\Vert _\infty =\text {o}(\delta ),\quad \left\| \frac{\partial R_{\delta ,\xi }}{\partial \delta } \right\| _\infty =\text {o}(1),\quad \left\| \frac{\partial R_{\delta ,\xi }}{\partial \xi _j}\right\| _\infty =\text {o}(\delta ) \end{aligned}$$

as \(\delta \rightarrow 0\), uniformly for \(\xi \in K\), with

$$\begin{aligned} A:=\int _{\mathbb {R}^4} U_{1,0}^3=c_4^3\int _{\mathbb {R}^4}\frac{1}{(1+|y|^2)^3}=\frac{c_4}{\alpha _4}. \end{aligned}$$

In particular, we have

$$\begin{aligned} PU_{\delta ,\xi }=U_{\delta ,\xi }-\delta A H(\cdot ,\xi )+\text {o}(\delta ),\quad P\psi ^0_{\delta ,\xi }=\psi _{\delta ,\xi }^0-\delta A H(\cdot ,\xi )+\text {o}(\delta )\nonumber \\ \end{aligned}$$
(A.2)

and

$$\begin{aligned} P\psi _{\delta ,\xi }^j=\psi _{\delta ,\xi }^j-\delta ^2 A\frac{\partial H}{\partial \xi }(\cdot ,\xi )+\text {o}(\delta ^2), \quad j=1,\ldots , 4, \end{aligned}$$
(A.3)

as \(\delta \rightarrow 0\), uniformly for \(\xi \in K\).

Proof

See Proposition 1 in [27]. \(\square \)

Lemma A.2

Take \(K\Subset \Omega \subset \mathbb {R}^4\). Then for every \(0<p< 2\),

$$\begin{aligned} \int _\Omega U_{\delta ,\xi }^p=\text {O}(\delta ^p) \quad \text { as } \;\delta \rightarrow 0, \end{aligned}$$

while

$$\begin{aligned} \int _\Omega U_{\delta ,\xi }^2= c_4^2\delta ^2 \omega _3 |\ln \delta |+\text {O}(\delta ^2) \quad \text { as } \;\delta \rightarrow 0 \end{aligned}$$

and, for \(2<p<4\),

$$\begin{aligned} \int _\Omega U_{\delta ,\xi }^p= \text {O}(\delta ^{4-p}) \quad \text { as } \;\delta \rightarrow 0, \end{aligned}$$

uniformly for \(\xi \in K\), where \(\omega _3\) denotes the measure of the unit sphere \(S^3\subset \mathbb {R}^4\).

Proof

Take \(R={{\mathrm{dist}}}(\xi ,\partial \Omega )/2\). Then

$$\begin{aligned} \int _\Omega U_{\delta ,\xi }^p&=c_4^p \int _{B_{R}(\xi )} \frac{\delta ^p}{(\delta ^2+|x-\xi |^2)^p}+\text {O}(\delta ^p)\\&=c_4^p \delta ^{4-p} \omega _3 \int _0^{R/\delta } \frac{t^3}{(1+t^2)^p}\, \mathrm{d}t+\text {O}(\delta ^p). \end{aligned}$$

We have \(t^3/(1+t^2)^p\le t^{3-2p}\) for every \(t\ge 0\). Thus, if \(p\ne 3/2\),

$$\begin{aligned} \int _\Omega U_{\delta ,\xi }^p=\text {O}(\delta ^{4-p}) + c_4^p \delta ^{4-p} \omega _3 \left[ t^{4-2p}\right] _{t=1}^{t=R/\delta }+\text {O}(\delta ^p)=\text {O}(\delta ^{4-p})+\text {O}(\delta ^p). \end{aligned}$$

Thus \(\int _\Omega U_{\delta ,\xi }^p=\text {O}(\delta ^p)\) if \(0<p<2\), and \(\int _\Omega U_{\delta ,\xi }^p=\text {O}(\delta ^{4-p})\) if \(2<p<4\).

Likewise, we have that

$$\begin{aligned} \int _\Omega U_{\delta ,\xi }^2&= c_4^2 \delta ^2 \omega _3 \int _0^{R/\delta } \frac{t^3}{(1+t^2)^2}\, \mathrm{d}t + \text {O}(\delta ^2)\\&=\frac{c_4^2}{2}\delta ^2 \omega _3 \left[ \frac{1}{1+t^2}+\ln (1+t^2)\right] ^{t=R/\delta }_{t=0}+\text {O}(\delta ^2)\\&=-c_4^2 \delta ^2 \omega _3 \ln \delta +\text {O}(\delta ^2), \end{aligned}$$

as \(\delta \rightarrow 0\). \(\square \)

Next we will present some asymptotic estimates related to the competition term of the system under consideration. For that, we will need the following simple pointwise estimates.

Lemma A.3

Let \(F:\mathbb {R}\rightarrow \mathbb {R}\) be defined by \(F(s)=(s^+)^4/4\). Then there exists \(c>0\) such that, for every \(a,b\in \mathbb {R}\),

$$\begin{aligned} |F(a+b)-F(a)-F'(a)b|\le & {} c (a^2b^2 +b^4), \\ |F'(a+b)-F'(a)-F''(a)b|\le & {} c(|a| b^2 +|b|^3), \end{aligned}$$

and

$$\begin{aligned} |F''(a+b)-F''(a)|\le c (|a| |b| + b^2). \end{aligned}$$

Moreover, for every \(p>1\) there exists \(C>0\) such that

$$\begin{aligned} \left| |a+b|^p-|a|^p\right| \le C \left( |a|^{p-1}|b| + |b|^p \right) , \end{aligned}$$

for every \(a,b\in \mathbb {R}\).

Proof

The proof is very elementary, and follows simply from a Taylor’s expansion with Lagrange-type remainder. \(\square \)

Lemma A.4

Given \(p,q>0\) and \(\eta >0\) small, we have that

$$\begin{aligned} \int _\Omega U_{\delta _1,\xi _1}^p U_{\delta _2,\xi _2}^q \le \text {O}(\delta _2^q)\int _\Omega U_{\delta _1,\xi _1}^p + \text {O}(\delta _1^p) \int _\Omega U_{\delta _2,\xi _2}^q+\text {O}(\delta _1^p\delta _2^q). \end{aligned}$$

as \((\delta _1,\delta _2)\rightarrow (0,0)\), uniformly for all \(\xi _1,\xi _2\in \Omega \) such that \(|\xi _1-\xi _2|\ge 2\eta \), \({{\mathrm{dist}}}(\xi _1,\partial \Omega ),{{\mathrm{dist}}}(\xi _2,\partial \Omega )\ge 2\eta \).

Proof

This is a simple consequence of the fact that

$$\begin{aligned}&\int _\Omega U_{\delta _1,\xi _1}^p U_{\delta _2,\xi _2}^q = \int _{B_\eta (\xi _1)} U_{\delta _1,\xi _1}^p U_{\delta _2,\xi _2}^q+ \int _{B_\eta (\xi _2)} U_{\delta _1,\xi _1}^p U_{\delta _2,\xi _2}^q\\&\quad +\int _{\Omega {\setminus } (B_\eta (\xi _1)\cup B_{\eta }(\xi _2))}U_{\delta _1,\xi _1}^p U_{\delta _2,\xi _2}^q \end{aligned}$$

together with the fact that \(U_{\delta _i,\xi _i}\le C \delta _i\) on \(\Omega {\setminus } B_\eta (\xi _i)\), for some \(C>0\) independent of \(\delta _i\). \(\square \)

Lemma A.5

Given \(j=0,\ldots , 4\) and \(\eta >0\) small, we have

$$\begin{aligned}&\left\| (PU_{\delta _2,\xi _2})^2(P\psi _{\delta _1,\xi _1}^j) \right\| _{4/3}=\text {O}(\delta _{1}\delta _2) \quad \text { and }\quad \\&\quad \left\| (PU_{\delta _1,\xi _1})(PU_{\delta _2,\xi _2})(P\psi _{\delta _1,\xi _1}^j)\right\| _{4/3}=\text {O}(\delta _{1}\delta _2) \end{aligned}$$

as \((\delta _1,\delta _2)\rightarrow (0,0)\), uniformly for all \(\xi _1,\xi _2\in \Omega \) such that \(|\xi _1-\xi _2|\ge 2\eta \), \({{\mathrm{dist}}}(\xi _1,\partial \Omega ),{{\mathrm{dist}}}(\xi _2,\partial \Omega )\ge 2\eta \).

Proof

To simplify notations, define \(U_i:=U_{\delta _i,\xi _i}\) and \(\psi _i^j:=\psi ^j_{\delta _i,\xi _i}\), for \(i=1,2\), \(j=0,\ldots , 4\). We have (\(j=0\))

$$\begin{aligned} \left\| (PU_2)^2(P\psi _1^0) \right\| _{4/3}^{4/3}=\int _\Omega |U_{2}|^{8/3}|\psi ^0_1|^{4/3}+R_{\varvec{\delta },\varvec{\xi }}, \end{aligned}$$

with

$$\begin{aligned} R_{\varvec{\delta },\varvec{\xi }}= & {} \int _\Omega \left[ (PU_2)^{8/3}-U_2^{8/3}\right] \left[ |P\psi _1^0|^{4/3}-|\psi _1^0|^{4/3} \right] \\&+\int _\Omega U_2^{8/3}\left[ |P\psi _1^0|^{4/3}-|\psi _1^0|^{4/3} \right] +\;\int _\Omega |\psi _1^0|^{4/3}\left[ (PU_2)^{8/3}-U_2^{8/3}\right] , \end{aligned}$$

so that, by taking in consideration Lemmas A.1, A.3 and A.4, and the fact that \(|\psi _1^0|\le C U_1\) for some \(C>0\), we have

$$\begin{aligned} |R_{\varvec{\delta },\varvec{\xi }}|\le & {} \int _\Omega \left| U_2^{5/3}\text {O}(\delta _2) +\text {O}(\delta _2^{8/3}) \right| \left| |\psi _1^0|^{1/3}\text {O}(\delta _1)+\text {O}(\delta _1^{4/3})\right| \\&+\int _\Omega U_2^{8/3} \left| |\psi _1^0|^{1/3}\text {O}(\delta _1) + \text {O}(\delta _1^{4/3})\right| \\&+\;\int _\Omega |\psi _1^0|^{4/3}\left| U_2^{5/3}\text {O}(\delta _2)+\text {O}(\delta _2^{8/3})\right| =\text {O}(\delta _1^{4/3}\delta _2^{4/3}) \end{aligned}$$

Since also

$$\begin{aligned} \int _\Omega (U_2)^{8/3}|\psi _1^0|^{4/3}&\le C \int _\Omega (U_2)^{8/3}(U_1)^{4/3}\le \text {O}(\delta _1^{4/3})\int _\Omega (U_2)^{8/3}+\text {O}(\delta _2^{8/3})\\&\quad \times \int _\Omega (U_1)^{4/3}+\text {O}(\delta _1^{4/3}\delta _2^{4/3})=\text {O}(\delta _1^{4/3}\delta _2^{4/3}), \end{aligned}$$

we have

$$\begin{aligned} \left\| (PU_2)^2(P\psi _1^0)\right\| _{4/3}^{4/3}=\text {O}(\delta _1^{4/3}\delta _2^{4/3}). \end{aligned}$$

For \(j\ge 1\), we can reason in an analogous way: by using the fact that \(|\psi _1^j|\le C U_1^2\) for some \(C>0\), we obtain

$$\begin{aligned} \Vert (PU_2)^2(P\psi _1^j)\Vert _{4/3}^{4/3}=\int _\Omega (U_{2})^{8/3}|\psi ^j_1|^{4/3}+\text {O}(\delta _1^{4/3}\delta _2^{4/3})=\text {O}(\delta _1^{4/3}\delta _2^{4/3}). \end{aligned}$$

As for the second conclusion of the lemma, reasoning in the same line, we write (\(j=0\))

$$\begin{aligned} \Vert (PU_1)(PU_2)(P\psi _1^0)\Vert _{4/3}^{4/3}=\int _\Omega (U_{1})^{4/3} (U_2)^{4/3}|\psi ^0_1|^{4/3}+{\tilde{R}}_{\varvec{\delta },\varvec{\xi }}, \end{aligned}$$

with

$$\begin{aligned} {\tilde{R}}_{\varvec{\delta },\varvec{\xi }}= & {} \int _\Omega \left[ (PU_1)^{4/3}-U_1^{4/3}\right] \left[ (PU_2)^{4/3}-U_2^{4/3}\right] \left[ |P\psi _1^0|^{4/3}-|\psi _1^0|^{4/3}\right] \\&+\;\int _\Omega U_1^{4/3} U_2^{4/3} \left[ |P\psi _1^0|^{4/3}-|\psi _1^0|^{4/3}\right] \\&+ \int _\Omega U_1^{4/3} \left[ (PU_2)^{4/3}-U_2^{4/3}\right] |\psi _1^0|^{4/3}\\&+\;\int _\Omega \left[ (PU_1)^{4/3}-U_1^{4/3}\right] U_2^{4/3} |\psi _1^0|^{4/3}+\int _\Omega \left[ (PU_1)^{4/3}-U_1^{4/3}\right] \\&\times \left[ (PU_2)^{4/3}-U_2^{4/3}\right] |\psi _1^0|^{4/3}\\&+\;\int _\Omega \left[ (PU_1)^{4/3}-U_1^{4/3}\right] U_2^{4/3} \left[ |P\psi _1^0|^{4/3}-|\psi _1^0|^{4/3}\right] \\&+\;\int _\Omega U_1^{4/3} \left[ (PU_2)^{4/3}-U_2^{4/3}\right] \left[ |P\psi _1^0|^{4/3}-|\psi _1^0|^{4/3}\right] \end{aligned}$$

By using once again Lemmas A.1, A.3 and A.4, we can prove that \({\tilde{R}}_{\varvec{\delta },\varvec{\xi }}=\text {O}(\delta _1^{4/3}\delta _2^{4/3})\). Since moreover (by Lemma A.4)

$$\begin{aligned} \int _\Omega U_{1}^{4/3} U_2^{4/3}|\psi ^0_1|^{4/3}\le C\int _\Omega U_1^{8/3}U_2^{4/3}=\text {O}(\delta _1^{4/3}\delta _2^{4/3}), \end{aligned}$$

we conclude, as wanted, that

$$\begin{aligned} \Vert (PU_1)(PU_2)(P\psi _1^0)\Vert _{4/3}^{4/3}=\text {O}(\delta _1^{4/3}\delta _2^{4/3}). \end{aligned}$$

The fact that

$$\begin{aligned} \Vert (PU_1)(PU_2)(P\psi _1^j)\Vert _{4/3}^{4/3}=\text {O}(\delta _1^{4/3}\delta _2^{4/3}) \quad \text { for } j=1,\ldots ,4, \end{aligned}$$

follows in an analogous way, using this time the estimate: \(|\psi _1^j|\le C U_1^{2}\), for some \(C>0\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pistoia, A., Tavares, H. Spiked solutions for Schrödinger systems with Sobolev critical exponent: the cases of competitive and weakly cooperative interactions. J. Fixed Point Theory Appl. 19, 407–446 (2017). https://doi.org/10.1007/s11784-016-0360-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-016-0360-6

Keywords

Mathematics Subject Classification

Navigation