Skip to main content
Log in

Multiplicity of periodic orbits for dynamically convex contact forms

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

We give a sharp lower bound for the number of geometrically distinct contractible periodic orbits of dynamically convex Reeb flows on prequantizations of symplectic manifolds that are not aspherical. Several consequences of this result are obtained, like a new proof that every bumpy Finsler metric on \(S^n\) carries at least two prime closed geodesics, multiplicity of elliptic and non-hyperbolic periodic orbits for dynamically convex contact forms with finitely many geometrically distinct contractible closed orbits and precise estimates of the number of even periodic orbits of perfect contact forms. We also slightly relax the hypothesis of dynamical convexity. A fundamental ingredient in our proofs is the common index jump theorem due to Y. Long and C. Zhu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abreu, M., Macarini, L.: Dynamical convexity and elliptic periodic orbits for Reeb flows (2014). arXiv:1411.2543 (preprint)

  2. Bourgeois, F.: A Morse-Bott approach to contact homology. In: Eliashberg, Y., Khesin, B., Lalonde, F. (eds.) Symplectic and Contact Topology: Interactions and Perspective, Fields Institute Communications, vol. 35, pp. 55–77. American Mathematical Society, Providence, R.I. (2003)

    Google Scholar 

  3. Bourgeois, F., Cieliebak, K., Ekholm, T.: A note on Reeb dynamics on the tight 3-sphere. J. Mod. Dyn. 1(4), 597–613 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bourgeois, F., Oancea, A.: \(S^1\)-equivariant symplectic homology and linearized contact homology. Int. Math. Res. Not. (2012). arXiv:1212.3731 (to appear)

  5. Cristofaro-Gardiner, D., Hutchings, M.: From one Reeb orbit to two. J. Differ. Geom. 102, 25–36 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  6. Duan, H., Long, Y.: Multiple closed geodesics on bumpy Finsler \(n\) -spheres. J. Differ. Equations 233(1), 221–240 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Duan, H., Long, Y.: The index quasi-periodicity and multiplicity of closed geodesics (2010). arXiv:1008.1458 (preprint)

  8. Eliashberg, Y., Givental, A., Hofer, H.: Introduction to Symplectic Field Theory, pp. 560–673. Geom. Funct. Anal, Special volume, Part II (2000)

    MATH  Google Scholar 

  9. Ekeland, I., Hofer, H.: Convex Hamiltonian energy surfaces and their periodic trajectories. Commun. Math. Phys. 113(3), 419–469 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ginzburg, V.: The Conley conjecture. Ann. Math. 172(2), 1127–1180 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ginzburg, V., Hein, D., Hryniewicz, U., Macarini, L.: Closed Reeb orbits on the sphere and symplectically degenerate maxima. Acta Math. Vietnam. 38(1), 55–78 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ginzburg, V., Goren, Y.: Iterated index and the mean Euler characteristic. J. Topol. Anal. 7(3), 453–481 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ginzburg, V., Gurel, B.: Conley conjecture for negative monotone symplectic manifolds. Int. Math. Res. Not. 8, 1748–1767 (2012)

    MATH  MathSciNet  Google Scholar 

  14. Ginzburg, V., Gurel, B.: The Conley Conjecture and Beyond. Arnold Math J. 1, 299–337 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ginzburg, V., Gurel, B., Macarini, L.: On the Conley conjecture for Reeb flows. Int. J. Math. 26, 1550047 (2015). doi:10.1142/S0129167X15500470

    Article  MATH  MathSciNet  Google Scholar 

  16. Gromoll, D., Meyer, W.: Periodic geodesics on compact Riemannian manifolds. J. Differ. Geom. 3, 493–510 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gurel, B.: Perfect Reeb flows and action-index relations. Geom. Dedicata 174, 105–120 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gutt, J.: The positive equivariant symplectic homology as an invariant for some contact manifolds. J. Symplectic Geom. (2015). arXiv:1503.01443 (to appear)

  19. Gutt, J., Kang, J.: On the minimal number of periodic orbits on some hypersurfaces in \({\mathbb{R}}^{2n}\). Ann. Inst. Fourier. (2015). arXiv:1508.00166 (to appear)

  20. Hingston, N.: Subharmonic solutions of Hamiltonian equations on tori. Ann. Math. 170(2), 529–560 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hofer, H., Wysocki, K., Zehnder, E.: The dynamics on three-dimensional strictly convex energy surfaces. Ann. Math. 148(1), 197–289 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hofer, H., Wysocki, K., Zehnder, E.: SC-smoothness, retractions and new models for smooth spaces. Discrete Contin. Dyn. Syst. 28, 665–788 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hofer, H., Wysocki, K., Zehnder, E.: Applications of polyfold theory I: The Polyfolds of Gromov–Witten Theory (2011). arXiv:1107.2097 (preprint)

  24. Hofer, H., Wysocki, K., Zehnder, E.: Polyfold and Fredholm Theory I: Basic Theory in M-Polyfolds (2014). arXiv:1407.3185 (preprint)

  25. Hryniewicz, U., Macarini, L.: Local contact homology and applications. J. Topol. Anal. 7(2), 167–238 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  26. Long, Y.: Bott formula of the Maslov-type index theory. Pacific J. Math. 187, 113–149 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Long, Y.: Index theory for symplectic paths with applications. Birkhäuser, Basel (2002)

    Book  MATH  Google Scholar 

  28. Long, Y., Zhu, C.: Closed characteristics on compact convex hypersurfaces in \(\mathbb{R}^{2n}\). Ann. Math. 155(2), 317–368 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. McDuff, D., Salamon, D.: J-holomorphic curves and symplectic topology. American Mathematical Society Colloquium Publications, vol. 52. American Mathematical Society, Providence, RI (2012)

  30. McLean, M.: Local Floer homology and infinitely many simple Reeb orbits. Algebr. Geom. Topol. 12(4), 1901–1923 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Pardon, J.: Contact homology and virtual fundamental cycles (2015). arXiv:1508.03873 (preprint)

  32. Rabinowitz, P.: Periodic solutions of Hamiltonian systems. Commun. Pure Appl. Math. 31(2), 157–184 (1978)

    Article  MathSciNet  Google Scholar 

  33. Rabinowitz, P.:A variational method for finding periodic solutions of differential equations. Nonlinear evolution equations (Proc. Sympos., Univ. Wisconsin, Madison, Wis., 1977), Publ. Math. Res. Center Univ. Wisconsin, vol. 40, pp. 225–251. Academic Press, New York, London (1978)

  34. Rabinowitz, P.: Periodic solutions of a Hamiltonian system on a prescribed energy surface. J. Differ. Equations 33(3), 336–352 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  35. Rademacher, H.: The second closed geodesic on Finsler spheres of dimension \(n > 2\). Trans. Am. Math. Soc. 362(3), 1413–1421 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  36. Robbin, J., Salamon, D.: The Maslov index for paths. Topology 32, 827–844 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  37. Salamon, D., Zehnder, E.: Morse theory for periodic solutions of Hamiltonian systems and the Maslov index. Commun. Pure Appl. Math. 45(10), 1303–1360 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  38. Taubes, C.: The Seiberg-Witten equations and the Weinstein conjecture. Geom. Topol. 11, 2117–2202 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  39. Wang, W.: Closed geodesics on positively curved Finsler spheres. Adv. Math. 218(5), 1566–1603 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  40. Wang, W.: On a conjecture of Anosov. Adv. Math. 230, 1597–1617 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  41. Wang, W.: Non-hyperbolic closed geodesics on Finsler spheres. J. Differ. Geom. 99, 473–496 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  42. Weinstein, A.: On the hypotheses of Rabinowitz’ periodic orbit theorems. J. Differ. Equations 33(3), 353–358 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  43. Ziller, W.: Geometry of the Katok examples. Ergod. Theory Dyn. Syst. 3(1), 135–157 (1983)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank IMPA and IST for the warm hospitality during the preparation of this work. We are grateful to Viktor Ginzburg, Basak Gurel and Jean Gutt for useful conversations regarding this paper. Part of these results were presented by the first author at the Workshop on Conservative Dynamics and Symplectic Geometry, IMPA, Rio de Janeiro, Brazil, August 3–7, 2015 and by the second author at the Contact and Symplectic Topology Session of the AMS-EMS-SPM Meeting, Porto, Portugal, June 10–13, 2015. They thank the organizers for the opportunity to participate in such wonderful events.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Macarini.

Additional information

This paper is dedicated to Professor Paul H. Rabinowitz.

MA was partially funded by FCT/Portugal through UID/MAT/04459/2013 and Project EXCL/MAT-GEO/0222/2012 and by CNPq/Brazil through a visiting Grant. LM was partially supported by CNPq/Brazil and by FCT/Portugal through a visiting Grant. The present work is part of the authors’ activities within BREUDS, a research partnership between European and Brazilian Research Groups in dynamical systems, supported by an FP7 International Research Staff Exchange Scheme (IRSES) Grant of the European Union.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abreu, M., Macarini, L. Multiplicity of periodic orbits for dynamically convex contact forms. J. Fixed Point Theory Appl. 19, 175–204 (2017). https://doi.org/10.1007/s11784-016-0348-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-016-0348-2

Keywords

Mathematics Subject Classification

Navigation