Skip to main content
Log in

Existence results for a singular quasilinear elliptic equation

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

Let \(\Omega \subset \mathbb R^N\) be a bounded domain with smooth boundary. Existence of a positive solution to the quasilinear equation

$$\begin{aligned} -\text {div}\left[ \left( a(x)+|u|^\theta \right) \nabla u\right] +\frac{\theta }{2}|u|^{\theta -2}u|\nabla u|^2=|u|^{p-2}u \quad \text {in}\ \Omega \end{aligned}$$

with zero Dirichlet boundary condition is proved. Here \(\theta >0\) and a(x) is a measurable function satisfying \(0<\alpha \le a(x)\le \beta \). The equation involves singularity when \(0<\theta \le 1\). As a main novelty with respect to corresponding results in the literature, we only assume \(\theta +2<p<\frac{2^*}{2}(\theta +2)\). The proof relies on a perturbation method and a critical point theory for E-differentiable functionals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arcoya, D., Boccardo, L., Orsina, L.: Critical points for functionals with quasilinear singular Euler-Lagrange equations. Calc. Var. Partial Differ. Equ. 47, 159–180 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arcoya, D., Boccardo, L.: Critical points for multiple integrals of the calculus of variations. Arch. Ration. Mech. Anal. 134, 249–274 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arcoya, D., Boccardo, L.: Some remarks on critical point theory. NoDEA Nonlinear Differ. Equ. Appl. 6, 79–100 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bass, F.G., Nasonov, N.N.: Nonlinear electromagnetic-spin waves. Phys. Rep. 189, 165–223 (1990)

    Article  Google Scholar 

  5. Candela, A., Palmieri, G.: Infinitely many solutions of some nonlinear variational equations. Calc. Var. Partial Differ. Equ. 34, 495–530 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Colin, M., Jeanjean, L., Squassina, M.: Stability and instability results for standing waves of quasi-linear Schrödinger equations. Nonlinearity 23, 1353–1385 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Colin, M., Jeanjean, L.: Solutions for a quasilinear Schrödinger equation: a dual approach. Nonlinear Anal. 56, 213–226 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. do Ó, J.M., Miyagaki, O., Soares, S.: Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Differ. Equ. 248, 722–744 (2010)

  9. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 3rd edn. Springer, Berlin (1998)

  10. Hasse, R.W.: A general method for the solution of nonlinear soliton and kink Schrödinger equations. Z. Phys. B 37, 83–87 (1980)

    Article  MathSciNet  Google Scholar 

  11. Kenig, C.E., Ponce, G., Vega, L.: The Cauchy problem for quasilinear Schrödinger equations. Invent. Math. 158, 343–388 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kosevich, A.M., Ivanov, B.A., Kovalev, A.S.: Magnetic solitons. Phys. Rep. 194, 117–238 (1990)

    Article  Google Scholar 

  13. Kurihara, S.: Large-amplitude quasi-solitons in superfluid films. J. Phys. Soc. Jpn. 50, 3262–3267 (1981)

  14. Lange, H., Poppenberg, M., Teismann, H.: Nash-Moser methods for the solutions of quasilinear Schrödinger equations. Commun. Partial Differ. Equ. 24, 1399–1418 (1999)

    Article  MATH  Google Scholar 

  15. Litvak, A.G., Sergeev, A.M.: One dimensional collapse of plasma waves. JETP Lett. 27, 517–520 (1978)

    Google Scholar 

  16. Liu, J., Wang, Y., Wang, Z.-Q.: Soliton solutions for quasilinear Schrödinger equations, II. J. Differ. Equ. 187, 473–493 (2003)

    Article  MATH  Google Scholar 

  17. Liu, J., Wang, Y., Wang, Z.-Q.: Solitons for quasilinear Schrödinger equations via the Nehari method. Commun. Partial Differ. Equ. 29, 879–901 (2004)

    Article  MATH  Google Scholar 

  18. Liu, X., Liu, J., Wang, Z.-Q.: Quasilinear elliptic equations via perturbation method. Proc. Am. Math. Soc. 141, 253–263 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Liu, X., Liu, J., Wang, Z.-Q.: Multiple sign-changing solutions for quasilinear elliptic equations via perturbation method. Commun. Partial Differ. Equ. 39, 2216–2239 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  20. Liu, J., Guo, Y.: Critical point theory for nonsmooth functionals. Nonlinear Anal. 66, 2731–2741 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Liu, J., Wang, Z.-Q.: Soliton solutions for quasilinear Schrödinger equations, I. Proc. Am. Math. Soc. 131, 441–448 (2002)

    Article  MATH  Google Scholar 

  22. Makhankov, V.G., Fedyanin, V.K.: Non-linear effects in quasi-one-dimensinal models of condensed matter theory. Phys. Rep. 104, 1–86 (1984)

    Article  MathSciNet  Google Scholar 

  23. Pellacci, B., Squassina, M.: Unbounded critical points for a class of lower semi-continuous functionals. J. Differ. Equ. 201, 25–62 (2004)

    Article  MATH  Google Scholar 

  24. Poppenberg, M., Schmitt, K., Wang, Z.-Q.: On the existence of soliton solutions to quasilinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 14, 329–344 (2002)

    Article  MATH  Google Scholar 

  25. Porkolab, M., Goldman, M.V.: Upper hybrid solitons and oscillating two-stream instabilities. Phys. Fluids 19, 872–881 (1976)

    Article  MathSciNet  Google Scholar 

  26. Quispel, G.R.W., Capel, H.W.: Equation of motion for the Heisenberg spin chain. Phys. A 110, 41–80 (1982)

    Article  MathSciNet  Google Scholar 

  27. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, No. 65. AMS, Providence (1986)

  28. Silva, E.A.B., Vieira, G.F.: Quasilinear asymptotically periodic Schrödinger equations with critical growth. Calc. Var. Partial Differ. Equ. 39, 1–33 (2010)

    Article  MATH  Google Scholar 

  29. Struwe, M.: Variational Methods. Springer-Verlag, Berlin (1996)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

Y. Jing is supported by National Natural Science Foundation of China (No. 11271265). Z. Liu is supported by National Natural Science Foundation of China (No. 11271265, No. 11331010) and Beijing Center for Mathematics and Information Interdisciplinary Sciences. Z.-Q. Wang is supported by National Natural Science Foundation of China (No. 11271201), Beijing Center for Mathematics and Information Interdisciplinary Sciences, and a Simons collaboration grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaoli Liu or Zhi-Qiang Wang.

Additional information

Dedicated to Professor Paul H. Rabinowitz with admiration and friendship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, Y., Liu, Z. & Wang, ZQ. Existence results for a singular quasilinear elliptic equation. J. Fixed Point Theory Appl. 19, 67–84 (2017). https://doi.org/10.1007/s11784-016-0341-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-016-0341-9

Keywords

Mathematics Subject Classification

Navigation