Skip to main content
Log in

Nonoscillation and oscillation of second-order linear dynamic equations via the sequence of functions technique

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

We study nonoscillation/oscillation of the dynamic equation

$${(rx^\Delta)}^{\Delta}(t) + p(t)x(t)= 0 \quad {\rm for} t \in[t_0, \infty)_{\mathbb{T}},$$

where \({t_0 \in \mathbb{T}}\), \({{\rm sup} \mathbb{T} = \infty}\), \({r \in {\rm C}_{\rm rd}([t_0, \infty)_{\mathbb{T}}, \mathbb{R}^+)}\), \({p \in {\rm C}_{\rm rd}([t_0, \infty)_{\mathbb{T}}, {\mathbb{R}^+_0})}\). By using the Riccati substitution technique, we construct a sequence of functions which yields a necessary and sufficient condition for the nonoscillation of the equation. In addition, our results are new in the theory of dynamic equations and not given in the discrete case either. We also illustrate applicability and sharpness of the main result with a general Euler equation on arbitrary time scales. We conclude the paper by extending our results to the equation

$${(rx^\Delta)}^{\Delta}(t) + p(t)x^\sigma(t)= 0 \quad {\rm for} t \in[t_0, \infty)_{\mathbb{T}},$$

which is extensively discussed on time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bohner M., Erbe L., Peterson A.: Oscillation for nonlinear second order dynamic equations on a time scale. J. Math. Anal. Appl. 301, 491–507 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bohner M., Peterson A.: Dynamic Equations on Time Scales. An Introduction with Applications. Birkhäuser Boston, Boston (2001)

    Book  MATH  Google Scholar 

  3. E. Braverman and B. Karpuz, Nonoscillation of second-order dynamic equations with several delays. Abstr. Appl. Anal. (2011), Art. ID 591254, 34 pp.

  4. Erbe L.: Oscillation criteria for second order linear equations on a time scale. Canad. Appl. Math. Quart. 9, 345–375 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Erbe L., Peterson A., Řehák P.: Comparison theorems for linear dynamic equations on time scales. J. Math. Anal. Appl. 275, 418–438 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Erbe L., Peterson A., Saker S. H.: Oscillation criteria for second-order nonlinear dynamic equations on time scales. J. Lond. Math. Soc. (2) 67, 701–714 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fite W. B.: Concerning the zeros of the solutions of certain differential equations. Trans. Amer. Math. Soc. 19, 341–352 (1918)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guseinov G.: Integration on time scales. J. Math. Anal. Appl. 285, 107–127 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guseinov G., Kaymakçalan B.: On a disconjugacy criterion for second order dynamic equations on time scales. J. Comput. Appl. Math. 141, 187–196 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hille E.: Non-oscillation theorems. Trans. Amer. Math. Soc. 64, 234–252 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Karpuz, B. Kaymakçalan, Öcalan Ö.: A dynamic generalization for Opial’s inequality and its application to second-order dynamic equations. Differ. Equ. Dyn. Syst. 18, 11–18 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kneser A.: Untersuchungen über die reellen Nullstellen der Integrale linearer Differentialgleichungen. Math. Ann. 42, 409–435 (1893)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kwong M. K., Zettl A.: Asymptotically constant functions and second order linear oscillation. J. Math. Anal. Appl. 93, 475–494 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Opial Z.: Sur les intégrales oscillantes de l’équation différentielle \({u''+f(t)u = 0}\). Ann. Polon. Math. 4, 308–313 (1958)

    MathSciNet  MATH  Google Scholar 

  15. P. Řehák, How the constants in Hille-Nehari theorems depend on time scales. Adv. Difference Equ. (2006), Art. ID 64534, 15 pp.

  16. Wintner A.: A criterion of oscillatory stability. Quart. Appl. Math. 7, 115–117 (1949)

    MathSciNet  MATH  Google Scholar 

  17. Wintner A.: On the non-existence of conjugate points. Amer. J. Math. 73, 368–380 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tang X. H., Yu J. S., Peng D. H.: Oscillation and nonoscillation of neutral difference equations with positive and negative coefficients. Comput. Math. Appl. 39, 169–181 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. J. R. Yan, Oscillatory properties of second-order differential equations with an “integralwise small” coefficient. Acta Math. Sinica 30 (1987), 206–215 (in Chinese).

  20. Zafer A.: On oscillation and nonoscillation of second-order dynamic equations. Appl. Math. Lett. 22, 136–141 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Başak Karpuz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpuz, B. Nonoscillation and oscillation of second-order linear dynamic equations via the sequence of functions technique. J. Fixed Point Theory Appl. 18, 889–903 (2016). https://doi.org/10.1007/s11784-016-0334-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-016-0334-8

Mathematics Subject Classification

Keywords

Navigation