Skip to main content
Log in

Levitin–Polyak well-posedness by perturbations for the split inverse variational inequality problem

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we extend the notion of Levitin–Polyak wellposedness by perturbations to the split inverse variational inequality problem. We derive metric characterizations of Levitin–Polyak wellposedness by perturbations. Under mild conditions, we prove that the Levitin–Polyak well-posedness by perturbations of the split inverse variational inequality problem is equivalent to the existence and uniqueness of its solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennati M.L.: Well-posedness by perturbation in optimization problems and metric characterization. Rend. Matem. 16, 613–623 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Censor Y., Bortfeld T., Martin B., Trofimov A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)

    Article  Google Scholar 

  3. Censor Y., Elfving T., Kopf N., Bortfeld T.: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Problems 21, 2071–2084 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Censor Y., Gibali A., Reich S.: Algorithms for the split variational inequality problem. Numer. Algorithm 59, 301–323 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. A. L. Dontchev and T. Zolezzi, Well-Posed Optimization Problems. Lecture Notes in Math. 1543, Springer, Berlin, 1993.

  6. F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York, 2003.

  7. Fang Y.P., Huang N.J., Yao J.C.: Well-posedness of mixed variational inequalities, inclusion problems and fixed point problems. J. Global Optim. 41, 117–133 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fang Y.P., Huang N.J., Yao J.C.: Well-posedness by perturbations of mixed variational inequalities in Banach spaces. European J. Oper. Res. 201, 682–692 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Furi M., Vignoli A.: About well-posed optimization problems for functionals in metric spaces. J. Optim. Theory Appl. 5(3), 225–229 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Glowinski, J. L. Lions and R. Tremolieres, Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam, 1981.

  11. He B.S.: A Goldstein’s type projection method for a class of variant variational inequalities. J. Comput. Math. 17, 425–434 (1999)

    MathSciNet  MATH  Google Scholar 

  12. He B.S., He X., Liu H.X.: Solving a class of constrained ‘black-box’ inverse variational inequalities. European J. Oper. Res. 204, 391–401 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. He X.Z., Liu H.X.: Inverse variational inequalities with projection-based solution methods. European J. Oper. Res. 208, 12–18 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hu R., Fang Y.P.: Levitin-Polyak well-posedness of variational inequalities. Nonlinear Anal. 72, 373–381 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hu R., Fang Y.P., Huang N.J.: Levitin-Polyak well-posedness for variational inequalities and for optimization problems with variational inequality constraints. J. Ind. Manag. Optim. 6, 465–481 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu R., Fang Y.P.: Well-posedness of inverse variational inequalities. J. Convex Anal. 15, 427–437 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Hu R., Fang Y.P.: Levitin-Polyak well-posedness by perturbations of inverse variational inequalities. Optim. Lett. 7, 343–359 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Hu and Y. P. Fang, Well-posedness of the split inverse variational inequality problem. Bull. Malays. Math. Sci. Soc. (2015), doi:10.1007/s40840-015-0213-2.

  19. Hu R., Fang Y.P.: Characterizations of Levitin-Polyak well-posedness by perturbations for the split variational inequality problem. Optimization 65, 1717–1732 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Huang X.X., Yang X.Q.: Levitin-Polyak well-posedness in generalized variational inequality problems with functional constraints. J. Ind. Manag. Optim. 3, 671–684 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang X.X., Yang X.Q., Zhu D.L.: Levitin-Polyak well-posedness of variational inequality problems with functional constraints. J. Global Optim. 44, 159–174 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications. Academic Press, New York, 1980.

  23. E. Klein and A. C. Thompson, Theory of Correspondences. JohnWiley & Sons, New York, 1984.

  24. K. Kuratowski, Topology. Vol. 1 and 2, Academic Press, New York, 1968.

  25. Lalitha C.S., Bhatia G.: Levitin-Polyak well-posedness for parametric quasivariational inequality problem of the Minty type. Positivity 16, 527–541 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Levitin E.S., Polyak B.T.: Convergence of minimizing sequences in conditional extremum problems. Soveit Math. Dokl. 7, 764–767 (1966)

    MATH  Google Scholar 

  27. Li X.B., Xia F.Q.: Hadamard well-posedness of a general mixed variational inequality in Banach space. J. Global Optim. 64, 1617–1629 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lignola M.B.: Well-posedness and L-well-posedness for quasivariational inequalities. J. Optim. Theory Appl. 128, 119–138 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lignola M.B., Morgan J.: Well-posedness for optimization problems with constraints defined by variational inequalities having a unique solution. J. Global Optim. 16, 57–67 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. R. Lucchetti, Convexity and Well-Posed Problems. Springer, New York, 2006.

  31. Lucchetti R., Patrone F.: A characterization of Tyhonov well-posedness for minimum problems, with applications to variational inequalities. Numer. Funct. Anal. Optim. 3, 461–476 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  32. R. Lucchetti and F. Patrone, Some properties of “well-posed” variational inequalities governed by linear operators. Numer. Funct. Anal. Optim. 5(1982/83), 349–361.

  33. Luo X.P.: Tikhonov regularization methods for inverse variational inequalities. Optim. Lett. 8, 877–887 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Luo X.P., Yang J.: Regularization and iterative methods for monotone inverse variational inequalities. Optim. Lett. 8, 1261–1272 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Scrimali L.: An inverse variational inequality approach to the evolutionary spatial price equilibrium problem. Optim. Eng. 13, 375–387 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tykhonov A.N.: On the stability of the functional optimization problem. USSR J. Comput. Math. Math. Phys. 6, 631–634 (1966)

    Google Scholar 

  37. Wong M.M.: Well-posedness of general mixed implicit quasi-variational inequalities, inclusion problems and fixed point problems. J. Nonlinear Convex Appl. 14, 389–414 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Xiao Y.B., Huang N.J.: Well-posedness for a class of variationalhemivariational inequalities with perturbations. J. Optim. Theory Appl. 151, 33–51 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yang J.: Dynamic power price problem: An inverse variational inequality approach. J. Ind. Manag. Optim. 4, 673–684 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zolezzi T.: Well-posedness criteria in optimization with application to the calculus of variations. Nonlinear Anal. 25, 437–453 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zolezzi T.: Extended well-posedness of optimization problems. J. Optim. Theory Appl. 91, 257–266 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zolezzi T.: Well-posedness and optimization under perturbations. Ann. Oper. Res. 101, 351–361 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Ping Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, R., Fang, YP. Levitin–Polyak well-posedness by perturbations for the split inverse variational inequality problem. J. Fixed Point Theory Appl. 18, 785–800 (2016). https://doi.org/10.1007/s11784-016-0321-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-016-0321-0

Mathematics Subject Classification

Keywords

Navigation