Skip to main content
Log in

Symplectic nonsqueezing in Hilbert space and discrete Schrödinger equations

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

We prove a generalization of Gromov’s symplectic nonsqueezing theorem for the case of Hilbert spaces. Our approach is based on filling almost complex Hilbert spaces by complex discs partially extending Gromov’s results on existence of J-complex curves. We apply our result to the flow of the discrete nonlinear Schrödinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Abbondandolo and P. Majer, A non-squeezing theorem for convex symplectic images of the Hilbert ball. Preprint, arXiv:1405.3200, 2014.

  2. Antoncev S.N., Monakhov V.N.: The Riemann-Hilbert boundary value problem with discontinuous boundary conditions for quasilinear elliptic systems of equations. Sov. Math. Dokl. 8, 868–870 (1967)

    MATH  Google Scholar 

  3. K. Astala, T. Iwaniec and G. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton University Press, Princeton, NJ, 2009.

  4. Aubin J.-P.: Un thèoréme de compacitè. C. R. Acad. Sci. Paris 256, 5042–5044 (1963)

    MathSciNet  MATH  Google Scholar 

  5. M. Audin and J. Lafontaine (eds.), Holomorphic Curves in Symplectic Geometry. Progress in Mathematics 117, Birkhäuser, Basel, 1994.

  6. Bourgain J.: Approximation of solutions of the cubic nonlinear Schrödinger equations by finite-dimensional equations and nonsqueezing properties. Int. Math. Res. Not. IMRN 2, 79–90 (1994)

    Article  MATH  Google Scholar 

  7. J. Bourgain: Aspects of long time behaviour of solutions of nonlinear hamiltonian evolution equations. Geom. Funct. Anal. 5, 105–140 (1995)

    Article  MathSciNet  Google Scholar 

  8. D. Burkholder, Martingales and singular integrals in Banach spaces. In: Handbook of the Geometry of Banach Spaces, Vol. I, North-Holland, Amsterdam, 2001, 233–269.

  9. E. M. Chirka, Complex Analytic Sets. Kluwer, Dordrecht, 1989.

  10. Colliander J., Keel M., Staffilani G., Takaoka H., Tao T.: Symplectic nonsqueezing of the Korteweg-de Vries flow. Acta Math. 195, 197–252 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eilbeck J.C., Lomdahl P.S., Scott A.C.: The discrete self-trapping equation. Phys. D 16, 318–338 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. O. Fabert, Infinite-dimensional symplectic non-squeezing using the nonstandard analysis. Preprint, arXiv 1501.05905, 2015.

  13. L. Grafakos, Classical Fourier Analysis. Springer, New York, 2008.

  14. Gromov M.: Pseudo holomorphic curves in symplectic manifolds. Invent. Math. 82, 307–347 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Herz C.: Theory of p-spaces with an application to convolution operators. Trans. Amer. Math. Soc. 154, 69–82 (1971)

    MathSciNet  MATH  Google Scholar 

  16. Kuksin S.: Infinite-dimensional symplectic capacities and a squeezing theorem for Hamiltonian PDE's. Comm. Math. Phys. 167, 531–552 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Kuksin, Analysis of Hamiltonian PDEs. Oxford University Press, Oxford, 2000.

  18. V. Monakhov, Boundary Value Problems with Free Boundary for Elliptic Systems of Equations. Translations of Mathematical Monographs 57, Amer. Math. Soc., Providence, RI, 1983.

  19. D. Roumégoux: A symplectic non-squeezing theorem for BBM equation. Dyn. Partial Differ. Equ. 7, 289–305 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sukhov A., Tumanov A.: Filling hypersurfaces by discs in almost complex manifolds of dimension 2. Indiana Univ. Math. J. 57, 509–544 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sukhov A., Tumanov A.: Gromov’s non-squeezing theorem and Beltrami type equation. Comm. Partial Differential Equations 39, 1898–1905 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sukhov A., Tumanov A.: Pseudoholomorphic discs and symplectic structures in Hilbert space. Contemp. Math. 662, 23–49 (2016)

    Article  MATH  Google Scholar 

  23. I. N. Vekua, Generalized Analytic Functions. Pergamon, London, 1962.

  24. K. Yoshida, Functional Analysis. Springer, New York, 1995.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Tumanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhov, A., Tumanov, A. Symplectic nonsqueezing in Hilbert space and discrete Schrödinger equations. J. Fixed Point Theory Appl. 18, 867–888 (2016). https://doi.org/10.1007/s11784-016-0318-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-016-0318-8

Mathematics Subject Classification

Keywords

Navigation