Skip to main content
Log in

Fixed point theorems for hybrid multivalued mappings in Hilbert spaces

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we introduce a new concept of hybrid multivalued mappings in Hilbert spaces. We then prove some properties and the existence of fixed points of these mappings. Further, we prove weak and strong convergence theorems for a finite family of hybrid multivalued mappings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Agarwal, D. ORegan and D. R. Sahu, Fixed Point Theory for Lipschitzian-type Mappings with Applications. Springer, New York, 2009.

  2. Aoyama K., Iemoto S., Kohsaka F., Takahashi W.: Fixed point and ergodic theorems for \({\lambda}\) -hybrid mappings in Hilbert spaces. J. Nonlinear Convex Anal. 11, 335–343 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Assad N.A., Kirk W.A.: Fixed point theorems for set-valued mappings of contractive type. Pacific J. Math. 43, 553–562 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brouwer L.E.J.: Über Abbildung von Mannigfaltigkeiten. Math. Ann. 71, 97–115 (1912)

    Article  MATH  Google Scholar 

  5. Browder F.E.: Nonexpansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. USA 54, 1041–1044 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  6. C. E. Chidume, C. O. Chidume, N. Djitte and M. S. Minjibir, Convergence theorems for fixed points of multivalued strictly pseudocontractive mappings in Hilbert spaces. Abstr. Appl. Anal. 2013 (2013), Article ID 629468.

  7. C. E. Chidume and J. N. Ezeora, Krasnoselskii-type algorithm for family of multi-valued strictly pseudo-contractive mappings. Fixed Point Theory Appl. 2014 (2014), doi:10.1186/1687-1812-2014-111.

  8. Daffer P.Z., Kaneko H.: Fixed points of generalized contractive multi-valued mappings. J. Math. Anal. Appl. 192, 655–666 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deimling K.: Multivalued Differential Equations. Walter de Gruyter, Berlin (1992)

    Book  MATH  Google Scholar 

  10. Domínguez Benavides T., Gavira B.: The fixed point property for multivalued nonexpansive mappings. J. Math. Anal. Appl. 328, 1471–1483 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Downing D., Kirk W.A.: Fixed point theorems for set-valued mappings in metric and Banach spaces. Math. Japonica 22, 99–112 (1977)

    MathSciNet  MATH  Google Scholar 

  12. Feng Y., Liu S.: Fixed point theorems for multi-valued contractive mapping and multi-valued Caristi type mappings. J. Math. Anal. Appl. 317, 103–112 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Geanakoplos J.: Nash and Walras equilibrium via Brouwer. Econom. Theory 21, 585–603 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Goebel K.: On a fixed point theorem for multivalued nonexpansive mappings. Ann. Univ. Mariae Curie-Skłodowska Sect. A 29, 69–72 (1975)

    MathSciNet  MATH  Google Scholar 

  15. Goebel K., Kirk W.A.: Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  16. K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings. Monographs and Textbooks in Pure and Applied Mathematics 83, Marcel Dekker, New York, 1984.

  17. Göhde D.: Zum Prinzip der kontraktiven Abbildung. Math. Nachr. 30, 251–258 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  18. Iemoto S., Takahashi W.: Approximating common fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space. Nonlinear Anal. 71, e2080–e2089 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jung J.S.: Strong convergence theorems for multivalued nonexpansive nonselfmappings in Banach spaces. Nonlinear Anal. 66, 2345–2354 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kakutani S.: A generalization of Brouwer’s fixed point theorem. Duke Math. J. 8, 457–459 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  21. S. H. Khan and I. Yildirim, Fixed points of multivalued nonexpansive mappings in Banach spaces. Fixed Point Theory Appl. 2012 (2012), doi:10.1186/1687- 812-2012-73.

  22. Khan S.H., Yildirim I., Rhoades B.E.: A one-step iterative process for two multivalued nonexpansive mappings in Banach spaces. Comput. Math. Appl. 61, 3172–3178 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kirk W.A.: A fixed point theorem for mappings which do not increase distances. Amer. Math. Monthly 72, 1004–1006 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kirk W.A., Massa S.: Remarks on asymptotic and Chebyshev centers. Houston J. Math. 16, 357–364 (1990)

    MathSciNet  MATH  Google Scholar 

  25. Kohsaka F., Takahashi W.: Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces. SIAM J. Optim. 19, 824–835 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kohsaka F., Takahashi W.: Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces. Arch. Math. (Basel) 91, 166–177 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lim T.C.: A fixed point theorem for multivalued nonexpansive mappings in a uniformly convex Banach space. Bull. Amer. Math. Soc. 80, 1123–1126 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu H.B.: Convergence theorems for a finite family of nonspreading and nonexpansive multivalued mappings and nonexpansive multivalued mappings and equilibrium problems with application. Theor. Math. Appl. 3, 49–61 (2013)

    MATH  Google Scholar 

  29. Marino G., Xu H.-K.: Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces. J. Math. Anal. Appl. 329, 336–346 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Markin J.T.: A fixed point theorem for set valued mappings. Bull. Amer. Math. Soc. 74, 639–640 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nadler S.B. Jr.: Multi-valued contraction mappings. Pacific J. Math. 30, 475–488 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nash J.F. Jr.: Equilibrium points in n-person games. Proc. Natl. Acad. Sci. USA 36, 48–49 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  33. Reich S.: Approximate selections, best approximations, fixed points, and invariant sets. J. Math. Anal. Appl. 62, 104–113 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  34. Reich S.: Fixed points of contractive functions. Boll. Unione Mat. Ital. 5, 26–42 (1972)

    MathSciNet  MATH  Google Scholar 

  35. S. Reich and A. J. Zaslavski, Convergence of iterates of nonexpansive set-valued mappings. In: Set Valued Mappings with Applications in Nonlinear Analysis, Ser. Math. Anal. Appl. 4, Taylor & Francis, London, 2002, 411–420.

  36. Sahu D.R.: Strong convergence theorems for nonexpansive type and non-self multi-valued mappings. Nonlinear Anal. 37, 401–407 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Song Y., Cho Y.J.: Some notes on Ishikawa iteration for multi-valued mappings. Bull. Korean Math. Soc. 48, 575–584 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Suantai S.: Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings. J. Math. Anal. Appl. 311, 506–517 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Takahashi W.: Fixed point theorems for new nonlinear mappings in a Hilbert space. J. Nonlinear Convex Anal. 11, 79–88 (2010)

    MathSciNet  MATH  Google Scholar 

  40. W. Takahashi, Introduction to Nonlinear and Convex Analysis. Yokohama Publishers, Yokohama, 2005 (in Japanese).

  41. W. Takahashi, Nonlinear Functional Analysis: Fixed Point Theory and Its Applications. Yokohama Publishers, Yokohama, 2000 (in Japanese).

  42. Takahashi W., Yao J.-C.: Fixed point theorems and ergodic theorems for nonlinear mappings in Hilbert spaces. Taiwanese J. Math. 15, 457–472 (2011)

    MathSciNet  MATH  Google Scholar 

  43. Turkoglu D., Altun I.: A fixed point theorem for multi-valued mappings and its applications to integral inclusions. Appl. Math. Lett. 20, 563–570 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Xu H.-K.: Multivalued nonexpansive mappings in Banach spaces. Nonlinear Anal. 43, 693–706 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Cholamjiak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cholamjiak, P., Cholamjiak, W. Fixed point theorems for hybrid multivalued mappings in Hilbert spaces. J. Fixed Point Theory Appl. 18, 673–688 (2016). https://doi.org/10.1007/s11784-016-0302-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-016-0302-3

Mathematics Subject Classification

Keywords

Navigation