Abstract
In this paper, we prove some fixed point theorem on orthogonal spaces. Our result improve the main result of the paper by Eshaghi Gordji et al. [On orthogonal sets and Banach fixed point theorem, to appear in Fixed Point Theory]. Also we prove a statement which is equivalent to the axiom of choice. In the last section, as an application, we consider the existence and uniqueness of a solution for a Volterra-type integral equation in L p space.
This is a preview of subscription content, access via your institution.
References
- 1.
Agarwal R. P., El-Gebeily M. A., O’Regan D.: Generalized contractions in partially ordered metric spaces. Appl. Anal. 87, 1–8 (2008)
- 2.
Aguirre Salazar L., Reich S.: A remark on weakly contractive mappings. J. Nonlinear Convex Anal. 16, 767–773 (2015)
- 3.
Ya. I. Alber and S. Guerre-Delabrere, Principles of weakly contractive maps in Hilbert spaces. In: New Results in Operator Theory and Its Applications, Oper. Theory Adv. Appl. 98, Birkhäuser, Basel, 1997, 7–22.
- 4.
Amini-Harandi A., Emami H.: A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations. Nonlinear Anal. 72, 2238–2242 (2010)
- 5.
Banach S.: Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fund. Math. 3, 133–181 (1922)
- 6.
Berinde V.: Approximating fixed points of weak \({\varphi}\)-contractions. Fixed Point Theory 4, 131–142 (2003)
- 7.
Bhaskar T. G., Lakshmikantham V.: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 65, 1379–1393 (2006)
- 8.
Boyd D. W., Wong J. S.: On nonlinear contractions. Proc. Amer. Math. Soc. 20, 458–464 (1969)
- 9.
Ćirić Lj. B.: A generalization of Banach’s contraction principle. Proc. Amer. Math. Soc. 45, 267–273 (1974)
- 10.
M. Eshaghi Gordji, H. Baghani and G. H. Kim, Common fixed point theorems for \({(\psi,\varphi)}\)-weak nonlinear contraction in partially ordered sets. Fixed Point Theory Appl. 2012 (2012), doi:10.1186/1687-1812-2012-62, 12 pages.
- 11.
M. Eshaghi Gordji, M. Ramezani, M. De La Sen and Y. J. Cho, On orthogonal sets and Banach fixed point theorem. Fixed Point Theory, to appear.
- 12.
Harjani J., Sadarangani K.: Fixed point theorems for weakly contractive mappings in partially ordered sets. Nonlinear Anal. 71, 3403–3410 (2009)
- 13.
Lakshmikantham V., Ćirić Lj. B.: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 70, 4341–4349 (2009)
- 14.
Nieto J. J., Pouso R. L., Rodríguez-López R.: Fixed point theorems in ordered abstract sets. Proc. Amer. Math. Soc. 135, 2505–2517 (2007)
- 15.
Nieto J. J., Rodríguez-López R.: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22, 223–239 (2005)
- 16.
Nieto J. J., Rodríguez-López R.: Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations. Acta Math. Sin. (Engl. Ser.) 23, 2205–2212 (2007)
- 17.
Ran A. C. M., Reurings M. C. B.: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Amer. Math. Soc. 132, 1435–1443 (2004)
- 18.
Reich S.: Some remarks concerning contraction mappings. Canad. Math. Bull. 14, 121–124 (1971)
- 19.
Rhoades B. E.: Some theorems on weakly contractive maps. Nonlinear Anal. 47, 2683–2693 (2001)
- 20.
D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012 (2012), doi:10.1186/1687-1812-2012-94, 6 pages.
- 21.
Zhang Q., Song Y.: Fixed point theory for generalized \({\varphi}\)-weak contractions. Appl. Math. Lett. 22, 75–78 (2009)
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Baghani, H., Eshaghi Gordji, M. & Ramezani, M. Orthogonal sets: The axiom of choice and proof of a fixed point theorem. J. Fixed Point Theory Appl. 18, 465–477 (2016). https://doi.org/10.1007/s11784-016-0297-9
Published:
Issue Date:
Mathematics Subject Classification
- 34A12
- 65R10
- 65R20
Keywords
- The axiom of choice
- fixed point
- orthogonal set
- Picard operator