M. F. Barnsley, Fractals Everywhere. 2nd ed., Academic Press Professional, Boston, MA, 1993.
Barnsley M. F., Vince A.: Real projective iterated function systems. J. Geom. Anal. 22, 1137–1172 (2012)
MATH
MathSciNet
Article
Google Scholar
V. Berinde, Iterative Approximation of Fixed Points. Lecture Notes in Math., Springer, Berlin, 2007.
D. Dumitru, Generalized iterated function systems containing Meir-Keeler functions. An. Univ. Bucureşti Mat. 58 (2009), 109–121.
Fernau H.: Infinite iterated function systems. Math. Nachr. 170, 79–91 (1994)
MATH
MathSciNet
Article
Google Scholar
J. Hutchinson, Fractals and self-similarity. Indiana Univ. Math. J. 30 (1981), 713–747.
K. Leśniak, Infinite iterated function systems: A multivalued approach. Bull. Pol. Acad. Sci. Math. 52 (2004), 1–8.
E. Llorens-Fuster, A. Petruşel and J.-C. Yao, Iterated function systems and well-posedness. Chaos Solitons Fractals 41 (2009), 1561–1568.
R. Miculescu, Generalized iterated function systems with place dependent probabilities. Acta Appl. Math. 130 (2014), 135–150.
A. Mihail, Recurrent iterated functions systems. Rev. Roumaine Math. Pures Appl. 53 (2008), 43–53.
A. Mihail and R. Miculescu, Applications of fixed point theorems in the theory of generalized IFS. Fixed Point Theory Appl. 2008 (2008), doi:10.1155/2008/312876.
A. Mihail and R. Miculescu, Generalized IFSs on noncompact spaces. Fixed Point Theory Appl. 2010 (2010), doi:10.1155/2010/584215.
N.-A. Secelean, Countable Iterated Function Systems. Lambert Academic Publishing, 2013.
N.-A. Secelean, Generalized countable iterated function systems. Filomat 25 (2011), 21–36.
N.-A. Secelean, Generalized iterated function systems on the space
l
∞(X). J. Math. Anal. Appl. 410 (2014), 847–858.
N.-A. Secelean, Iterated function systems consisting of F-contractions. Fixed Point Theory Appl. 2013 (2013), doi:10.1186/1687-1812-2013-277.
N.-A. Secelean, The existence of the attractor of countable iterated function systems. Mediterr. J. Math. 9 (2012), 61–79.
F. Strobin and J. Swaczyna, On a certain generalisation of the iterated function system. Bull. Aust. Math. Soc. 87 (2013), 37–54.
Vince A.: Möbius iterated function systems. Trans. Amer. Math. Soc. 365, 491–509 (2013)
MATH
MathSciNet
Article
Google Scholar
D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012 (2012), doi:10.1186/1687-1812- 2012-94.