Skip to main content
Log in

Fractal zeta functions and complex dimensions of relative fractal drums

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

The theory of “zeta functions of fractal strings” has been initiated by the first author in the early 1990s and developed jointly with his collaborators during almost two decades of intensive research in numerous articles and several monographs. In 2009, the same author introduced a new class of zeta functions, called “distance zeta functions,” which since then has enabled us to extend the existing theory of zeta functions of fractal strings and sprays to arbitrary bounded (fractal) sets in Euclidean spaces of any dimension. A natural and closely related tool for the study of distance zeta functions is the class of “tube zeta functions,” defined using the tube function of a fractal set. These three classes of zeta functions, under the name of “fractal zeta functions,” exhibit deep connections with Minkowski contents and upper box dimensions, as well as, more generally, with the complex dimensions of fractal sets. Further extensions include zeta functions of relative fractal drums, the box dimension of which can assume negative values, including minus infinity. We also survey some results concerning the existence of the meromorphic extensions of the spectral zeta functions of fractal drums, based in an essential way on earlier results of the first author on the spectral (or eigenvalue) asymptotics of fractal drums. It follows from these results that the associated spectral zeta function has a (nontrivial) meromorphic extension, and we use some of our results about fractal zeta functions to show the new fact according to which the upper bound obtained for the corresponding abscissa of meromorphic convergence is optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Baker, Transcendental Number Theory. Cambridge Univ. Press, Cambridge, 1975.

  2. M. V. Berry, Distribution of modes in fractal resonators. In: Structural Stability in Physics (Proc. Internat. Symposia Appl. Catastrophe Theory and Topological Concepts in Phys., Inst. Inform. Sci., Univ. T¨ubingen, T¨ubingen, 1978), Springer-Verlag, Berlin, 1979, 51– 53.

  3. M. V. Berry, Some geometric aspects of wave motion: Wavefront dislocations, diffraction catastrophes, diffractals. In: Geometry of the Laplace Operator, Proc. Sympos. Pure Math. 36, Amer. Math. Soc., Providence, RI, 1980, 13–38.

  4. G. Bouligand, Ensembles impropres et nombre dimensionnel. Bull. Sci. Math. (2) 52 (1928), 320–344 and 361–376.

  5. H. Brezis, Analyse Fonctionnelle: Théorie et Applications. Masson, Paris, 1983; expanded English version: Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.

  6. Brossard J., Carmona R.: Can one hear the dimension of a fractal?. Comm. Math. Phys. 104, 103–122 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  7. Caetano A. M.: On the search for the asymptotic behaviour of the eigenvalues of the Dirichlet Laplacian for bounded irregular domains. Internat. J. Appl. Sci. Comput. 2, 261–287 (1995)

    MathSciNet  Google Scholar 

  8. E. Christensen, C. Ivan and M. L. Lapidus, Dirac operators and spectral triples for some fractal sets built on curves. Adv. Math. 217 (2008), 42–78.

  9. R. Courant and D. Hilbert, Methods of Mathematical Physics. I. Interscience Publ. Inc., New York, 1953.

  10. A. Deniz, Ş,. Koçak, Y. Özdemir and A. E. Üreyen, Tube volumes via functional equations. J. Geom. 105 (2014), 1–10.

  11. K. E. Ellis, M. L. Lapidus, M. C. Mackenzie and J. A. Rock, Partition zeta functions, multifractal spectra, and tapestries of complex dimensions. In: Benoîit Mandelbrot: A Life in Many Dimensions (M. Frame and N. Cohen, eds.), The Mandelbrot Memorial Volume, World Scientific, Singapore, 2015, 267–322 (in press).

  12. K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications. 3rd ed., John Wiley and Sons, Chichester, 2014.

  13. J. Fleckinger-Pellé and D. Vassiliev, An example of a two-term asymptotics for the “counting function" of a fractal drum. Trans. Amer. Math. Soc. 337 (1993), 99–116.

  14. H. Federer, Geometric Measure Theory. Springer-Verlag, New-York, 1969.

  15. A. O. Gel’fond, Transcendental and Algebraic Numbers. Dover Phoenix editions, Dover Publications, Inc., New York, 1960.

  16. J. Gerling, Untersuchungen zur Theorie von Weyl–Berry–Lapidus. Graduate Thesis (Diplomarbeit), Dept. of Physics, Universität Osnabr ück, Germany, 1992.

  17. J. Gerling and H.-J. Schmidt, Self-similar drums and generalized Weierstrass functions. Phys. A. 191 (1992), 536–539.

  18. D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order. 2nd ed., Springer-Verlag, Berlin, 1983.

  19. P. B. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah– Singer Index Theorem. 2nd ed., Publish or Perish, Wilmington, 1984. (New revised and enlarged edition, in Stud. Adv. Math., CRC Press, Boca Raton, 1995.)

  20. P. Hajłasz, P. Koskela and H. Tuominen, Sobolev embeddings, extensions and measure density condition. J. Funct. Anal. 254 (2008), 1217–1234.

  21. P. Hajłasz, P. Koskela and H. Tuominen, Measure density and extendability of Sobolev functions. Rev. Mat. Iberoam. 24 (2008), 645–669.

  22. B. M. Hambly and M. L. Lapidus, Random fractal strings: Their zeta functions, complex dimensions and spectral asymptotics. Trans. Amer. Math. Soc. 358 (2006), 285–314.

  23. R. Harvey and J. Polking, Removable singularities of solutions of linear partial differential equations. Acta Math. 125 (1970), 39–56.

  24. C. Q. He and M. L. Lapidus, Generalized Minkowski content, spectrum of fractal drums, fractal strings and the Riemann zeta-function. Mem. Amer. Math. Soc. 127 (1997), 1–97.

  25. H. Herichi and M. L. Lapidus, Fractal Strings, Quantized Number Theory and the Riemann Hypothesis: From Infinitesimal Shifts and Spectral Operators to Phase Transitions and Universality. Research Monograph, Preprint, 2014.

  26. H. Herichi and M. L. Lapidus, Riemann zeros and phase transitions via the spectral operator on fractal strings. J. Phys. A 45 (2012), 374005, 23 pp.

  27. H. Herichi and M. L. Lapidus, Fractal complex dimensions, Riemann hypothesis and invertibility of the spectral operator. In: Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics. I. Fractals in Pure Mathematics (D. Carfì et al., eds.), Contemp. Math. 600, Amer. Math. Soc., Providence, RI, 2013, 51–89.

  28. Herichi H., Lapidus M. L.: Truncated infinitesimal shifts, spectral operators and quantized universality of the Riemann zeta function. Ann. Fac. Sci. Toulouse Math. 23(6), 621–664 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  29. H. Herichi and M. L. Lapidus, Quantized Riemann zeta function: Its operator-valued Dirichlet series, Euler product and analytic continuation. In preparation.

  30. Hörmander L.: The spectral function of an elliptic operator. Acta Math. 121, 193–218 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  31. L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis. 2nd ed. (of the 1983 edn.), Springer-Verlag, Berlin, 1990.

  32. L. Hörmander, The Analysis of Linear Partial Differential Operators. Vols. II–IV, Springer-Verlag, Berlin, 1983, 1985.

  33. Hutchinson J.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  34. Jones P.W.: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta. Math. 147, 1–61 (1981)

    Article  MathSciNet  Google Scholar 

  35. Kac M.: Can one hear the shape of a drum?. Amer. Math. Monthly. 73, 1–23 (1966)

    Article  MATH  Google Scholar 

  36. N. Lal and M. L. Lapidus, Hyperfunctions and spectral zeta functions of Laplacians on self-similar fractals. J. Phys. A 45 (2012), 365205, 14 pp.

  37. N. Lal and M. L. Lapidus, The decimation method for Laplacians on fractals: Spectra and complex dynamics, In: Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics II: Fractals in Applied Mathematics (D. Carfì et al., eds.), Contemp. Math. 601, Amer. Math. Soc., Providence, RI, 2013, 227–249.

  38. Lapidus M. L.: Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl–Berry conjecture. Trans. Amer. Math. Soc. 325, 465–529 (1991)

    Article  MathSciNet  Google Scholar 

  39. M. L. Lapidus, Spectral and fractal geometry: From the Weyl-Berry conjecture for the vibrations of fractal drums to the Riemann zeta-function. In: Differential Equations and Mathematical Physics (C. Bennewitz, ed.), Proc. Fourth UAB Internat. Conf. (Birmingham, 1990), Academic Press, New York, 1992, 151–182.

  40. M. L. Lapidus, Vibrations of fractal drums, the Riemann hypothesis, waves in fractal media, and the Weyl–Berry conjecture. In: Ordinary and Partial Differential Equations, (B. D. Sleeman and R. J. Jarvis, eds.), vol. IV, Proc. Twelfth Internat. Conf. (Dundee, Scotland, UK, 1992), Pitman Research Notes in Math. Series 289, Longman Scientific and Technical, London, 1993, 126–209.

  41. M. L. Lapidus, Analysis on fractals, Laplacians on self-similar sets, noncommutative geometry and spectral dimensions. Topol. Methods Nonlinear Anal. 4 (1994), 137–195.

  42. M. L. Lapidus, Towards a noncommutative fractal geometry? Laplacians and volume measures on fractals. In: Harmonic Analysis and Nonlinear Differential Equations (A Volume in Honor of Victor L. Shapiro), Contemp. Math. 208, Amer. Math. Soc., Providence, RI, 1997, 211–252.

  43. M. L. Lapidus, In Search of the Riemann Zeros: Strings, Fractal Membranes and Noncommutative Spacetimes. Amer. Math. Soc., Providence, RI, 2008.

  44. M. L. Lapidus, Towards quantized number theory: Spectral operators and an asymmetric criterion for the Riemann hypothesis. Preprint, 2014. (For inclusion in the special issue of the Philosophical Transactions of the Royal Society titled “Geometric Concepts in the Foundations of Physics", 2015.)

  45. M. L. Lapidus, The sound of fractal strings and the Riemann hypothesis. Preprint, 2014. (For inclusion in Analytic Number Theory: In Honor of Helmut Maier’s 60th Birthday (C. B. Pomerance and T. Rassias, eds.), Springer, Berlin, Heidelberg and New York, 2015.)

  46. M. L. Lapidus, Riemann hypothesis, weighted Bergman spaces and quantized Riemann zeta function (tentative title). In preparation.

  47. M. L. Lapidus, Quantized Weyl conjectures, spectral operators and Polya–Hilbert operators (tentative title). In preparation.

  48. M. L. Lapidus, J. Lévy-Véhel and J. A. Rock, Fractal strings and multifractal zeta functions. Lett. Math. Phys. 88 (2009), 101–129.

  49. M. L. Lapidus and H. Lu, The geometry of p-adic fractal strings: A comparative survey. In: Advances in Non-Archimedean Analysis, Proc. 11th Internat. Conference on “p-Adic Functional Analysis" (Clermont-Ferrand, France, 2010), (J. Araujo, B. Diarra and A. Escassut, eds.), Contemp. Math. 551, Amer. Math. Soc., Providence, RI, 2011, 163–206.

  50. Lapidus M. L., Maier H.: Hypothèse de Riemann, cordes fractales vibrantes et conjecture de Weyl–Berry modifiée. C. R. Acad Sci.Paris Sér. I Math. 313, 19–24 (1991)

    Google Scholar 

  51. Lapidus M. L., Maier H.: The Riemann hypothesis and inverse spectral problems for fractal strings. J. Lond. Math. Soc. 52(2), 15–34 (1995)

    Article  Google Scholar 

  52. Lapidus M. L., Neuberger J. W., Renka R. J., Griffith C. A.: Snowflake harmonics and computer graphics: Numerical computation of spectra on fractal domains. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 6, 1185–1210 (1996)

    Article  MathSciNet  Google Scholar 

  53. Lapidus M.L., Pang M.M.H.: Eigenfunctions of the Koch snowflake drum. Comm. Math. Phys. 172, 359–376 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  54. Lapidus M.L., Pearse E.P.J.: A tube formula for the Koch snowflake curve, with applications to complex dimensions. J. Lond. Math. Soc. (2) 74, 397–414 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  55. M. L. Lapidus and E. P. J. Pearse, Tube formulas for self-similar fractals. In: Analysis on Graphs and Its Applications (P. Exner et eds.), Proc. Sympos. Pure Math. 77, Amer. Math. Soc., Providence, RI, 2008, 211–230.

  56. Lapidus M.L., Pearse E.P.J.: Tube formulas and complex dimensions of self-similar tilings. Acta Appl. Math. 112, 91–137 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  57. Lapidus M.L., Pearse E.P.J., Winter S.: Pointwise tube formulas for fractal sprays and self-similar tilings with arbitrary generators. Adv. Math. 227, 1349–1398 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  58. M. L. Lapidus, E. P. J. Pearse and S. Winter, Minkowski measurability results for self-similar tilings and fractals with monophase generators. In: Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics. I. Fractals in Pure Mathematics (D. Carfì et al., eds.), Contemp. Math. 600, Amer. Math. Soc., Providence, 2013, 185–203.

  59. Lapidus M.L., Pomerance C.: Fonction zěta de Riemann et conjecture de Weyl–Berry pour les tambours fractals. C. R. Acad. Paris Sér. I Math. 310, 343–348 (1990)

    MATH  MathSciNet  Google Scholar 

  60. Lapidus M.L., Pomerance C.: The Riemann zeta-function the one-dimensional Weyl–Berry conjecture for fractal drums. Proc. Lond. Math. Soc. (3) 66, 41–69 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  61. Lapidus M.L., Pomerance C.: Counterexamples to the modified Weyl-Berry conjecture on fractal drums. Math. Proc. Cambridge Philos. Soc. 119, 167–178 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  62. M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory of Complex Dimensions. Research Monograph, to appear.

  63. M. L. Lapidus, G. Radunović and D. Žubrinić, Distance and tube zeta functions of fractals and arbitrary compact sets. Preprint, 2014.

  64. M. L. Lapidus, G. Radunović and D. Žubrinić, Complex dimensions of fractals and meromorphic extensions of fractal zeta functions. preparation.

  65. M. L. Lapidus, G. Radunović and D. Žubrinić, Zeta functions complex dimensions of relative fractal drums: Theory, examples and applications. In preparation.

  66. M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal zeta functions and complex dimensions: A general higher-dimensional theory. Preprint, 2014. (For inclusion in the Proceedings of the International Conference "Geometry and Stochastics V", Tabarz, Germany, March 2014, Progress in Probability, Birkhäuser, Basel, Boston and Berlin, 2015, C. Bandt, K. Falconer and M. Zähle, eds.; based on a plenary lecture given by the first author at that conference.)

  67. M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal tube formulas and a Minkowski measurability criterion for compact subsets of Euclidean spaces. Preprint, 2014.

  68. M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal tube formulas for compact sets and relative fractal drums, with application to a Minkowski measurability criterion. Preprint, 2014.

  69. Lapidus M.L., Rock J.A.: Towards zeta functions and complex dimensions of multifractals. Complex Var. Elliptic Equ. 54, 545–560 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  70. M. L. Lapidus, J. A. Rock and D. Žubrinić, Box-counting fractal strings, zeta functions, and equivalent forms of Minkowski dimension. In: Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics. I: Fractals in Pure Mathematics (D. Carfì et al., eds.), Contemp. Math. 600, Amer. Math. Soc., Providence, RI, 2013, 239– 271.

  71. M. L. Lapidus and J. J. Sarhad, Dirac operators and geodesic metric on the harmonic Sierpinski gasket and other fractal sets. J. Noncommut. Geom., to appear.

  72. M. L. Lapidus and M. van Frankenhuijsen, Fractal Geometry and Number Theory. Complex Dimensions of Fractal Strings and Zeros of Zeta Functions, Birkhäuser, Boston, 2000.

  73. M. L. Lapidus and M. van Frankenhuijsen, Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings. Springer Monogr. Math., Springer, New York, 2006.

  74. M. L. Lapidus and M. van Frankenhuijsen, Fractal Geometry, Complex Dimensions, and Zeta Functions: Geometry and Spectra of Fractal Strings. 2nd revised and enlarged ed. (of the 2006 ed.), Springer Monogr. Math., Springer, New York, 2013.

  75. Lévy-Véhel J., Mendivil F.: Multifractal and higher-dimensional zeta functions. Nonlinearity 24, 259–276 (2011)

    Article  MathSciNet  Google Scholar 

  76. J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. I, English transl., Springer-Verlag, Berlin, 1972.

  77. B. B. Mandelbrot, The Fractal Geometry of Nature. Revised and enlarged ed. (of the 1977 ed.), W. H. Freeman, New York, 1983.

  78. Maz’ja V.G.: Sobolev Spaces. Springer-Verlag, Berlin (1985)

    Book  MATH  Google Scholar 

  79. G. Métivier, Théorie spectrale d’opérateurs elliptiques sur des ouverts irréguliers. In: Séminaire Goulaic–Schwartz, No. 21, Ecole Polytechnique, Paris, 1973.

  80. G. Métivier, Etude asymptotique des valeurs propres et de la fonction spectrale de problèmes aux limites. Thèse de Doctorat d’Etat, Mathématiques, Université de Nice, France, 1976.

  81. Métivier G.: Valeurs propres de problèmes aux limites elliptiques irréguliers. Bull. Soc. Math. France Mém. 51–52, 125–219 (1977)

    Google Scholar 

  82. S. Molchanov and B. Vainberg, On spectral asymptotics for domains with fractal boundaries. Comm. Math. Phys. 183 (1997), 85–117.

  83. Pearse E.P.J.: Canonical self-affine tilings by iterated function systems. Indiana Univ. Math. J. 56, 3151–3169 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  84. Pearse E.P.J., Winter S.: Geometry of canonical self-similar tilings. Rocky Mountain J. Math. 42, 1327–1357 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  85. Pham The Lai, Meilleures estimations asymptotiques des restes de la fonction spectrale et des valeurs propres relatifs au laplacien. Math. Scand. 48 (1981), 5–38.

  86. Ch. Pommerenke, Boundary Behavior of Conformal Maps. Springer, New York, 1992.

  87. A. G. Postnikov, Tauberian Theory and Its Applications. Tr. Mat. Inst. Steklova 144 (1979); English transl.: Proc. Steklov Inst. Math., No. 2, Amer. Math. Soc., Providence, RI, 1980.

  88. G. Radunović, Fractal Analysis of Unbounded Sets in Euclidean Spaces and Lapidus Zeta Functions. Ph.D. Thesis, University of Zagreb, Croatia, 2015.

  89. M. Reed and B. Simon, Methods of Modern Mathematical Physics. Vol. IV, Analysis of Operators, Academic Press, New York, 1979.

  90. R. T. Seeley, Complex powers of an elliptic operator. In: Proc. Symposia Pure Math. 10, Amer. Math. Soc., Providence, RI, 1967, 288–307.

  91. Seeley R.T.: A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain of \({\mathbb{R}^3}\) . Adv. Math. 29, 244–269 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  92. Seeley R.T.: An estimate near the boundary for the spectral counting function of the Laplace operator. Amer. J. Math. 102, 869–902 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  93. J.-P. Serre, A Course in Arithmetic. Springer-Verlag, Berlin, 1973 (Translated from the French, Graduate Texts in Math. 7).

  94. B. Simon, Functional Integration and Quantum Physics. Academic Press, New York, 1979.

  95. Stachó L.L.: On the volume function of parallel sets. Acta Sci. Math. 38, 365–374 (1976)

    MATH  Google Scholar 

  96. A. Teplyaev, Spectral zeta functions of symmetric fractals. In: Fractal Geometry and Stochastics III, Progr. Probab. 57, Birkhäuser-Verlag, Basel, 2004, 245–262.

  97. Teplyaev A.: Spectral zeta functions of fractals and the complex dynamics of polynomials. Trans. Amer. Math. Soc. 359, 4339–4358 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  98. E. C. Titchmarsh, The Theory of the Riemann Zeta-Function. 2nd ed. (revised by D. R. Heath-Brown), Oxford University Press, Oxford, 1986.

  99. Tricot C.: Dimensions aux bords d’un ouvert. Ann. Sci. Math. Québec 11, 205–235 (1987)

    MATH  MathSciNet  Google Scholar 

  100. M. van den Berg and P. B. Gilkey, A comparison estimate for the heat equation with an application to the heat content of the s-adic von Koch snowflake. Bull. Lond. Math. Soc. 30 (1998), 404–412.

  101. I. M. Vinogradov (ed.), Matematicheskaya entsiklopediya. Vol. 2, Sov. Entsiklopediya, Moscow, 1979. (Also: online, English transl.: Yu. V. Komlenko and E. L. Tonkov (authors), Quasi-periodic function. Encyclopedia of Mathematics, public wiki monitored by an editorial board under the management of the European Mathematical Society.)

  102. Weyl H.: Über die Abhängigkeit der Eigenschwingungen einer Membran von deren Begrenzung. J. Reine Angew. Math. 141, 1–11 (1912)

    MATH  Google Scholar 

  103. Weyl H.: Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen. Math. Ann. 71, 441–479 (1912)

    Article  MATH  MathSciNet  Google Scholar 

  104. H. Weyl, Hermann Weyl: Gesammelte Abhandlungen. (Collected Works), Springer-Verlag, Berlin, 1968.

  105. D. Žubrinić, Analysis of Minkowski contents of fractal sets and applications. Real Anal. Exchange 31 (2005/2006), 315–354.

  106. D. Žubrinić, Hausdorff dimension of singular sets of Sobolev functions and applications. In: More Progress in Analysis, Proc. of the 5th Internat. ISAAC Congress (H. G. W. Begher and F. Nicolosi, eds.), World Scientific, 2009, 793–802.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel L. Lapidus.

Additional information

To Professor Haïm Brezis, with profound admiration, on the occasion of his 70th birthday.

Avec mes sincères remerciements, pour votre amitié, vos enseignements, et votre exemple édifiant. Votre étudiant, Michel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapidus, M.L., Radunović, G. & Žubrinić, D. Fractal zeta functions and complex dimensions of relative fractal drums. J. Fixed Point Theory Appl. 15, 321–378 (2014). https://doi.org/10.1007/s11784-014-0207-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-014-0207-y

Mathematics Subject Classification

Keywords

Navigation