Skip to main content
Log in

Approximate fixed points of nonexpansive mappings in unbounded sets

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

It follows from Banach’s fixed point theorem that every nonexpansive self-mapping of a bounded, closed and convex set in a Banach space has approximate fixed points. This is no longer true, in general, if the set is unbounded. Nevertheless, as we show in the present paper, there exists an open and everywhere dense set in the space of all nonexpansive self-mappings of any closed and convex (not necessarily bounded) set in a Banach space (endowed with the natural metric of uniform convergence on bounded subsets) such that all its elements have approximate fixed points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banach S.: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 3, 133–181 (1922)

    MATH  Google Scholar 

  2. de Blasi F.S., Myjak J.: Sur la convergence des approximations successives pour les contractions non linéaires dans un espace de Banach. C. R. Acad. Sci. Paris 283, 185–187 (1976)

    MATH  Google Scholar 

  3. de Blasi F. S., Myjak J.: Sur la porosité de l’ensemble des contractions sans point fixe. C. R. Acad. Sci. Paris 308, 51–54 (1989)

    MATH  Google Scholar 

  4. Goebel K., Kirk W.A.: Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  5. Goebel K., Reich S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  6. W. A. Kirk, Contraction mappings and extensions. In: Handbook of Metric Fixed Point Theory, Kluwer, Dordrecht, 2001, 1–34.

  7. Kuczumow T.: A remark on the approximate fixed point property. Abstr. Appl. Anal. 2003, 93–99 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Matoušková E., Reich S.: Reflexivity and approximate fixed points. Studia Math. 159, 403–415 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rakotch E.: A note on contractive mappings. Proc. Amer. Math. Soc. 13, 459–465 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  10. Reich S.: The almost fixed point property for nonexpansive mappings. Proc. Amer. Math. Soc. 88, 44–46 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Reich S.: The alternating algorithm of von Neumann in the Hilbert ball. Dynam. Systems Appl. 2, 21–25 (1993)

    MathSciNet  MATH  Google Scholar 

  12. Reich S., Shafrir I.: Nonexpansive iterations in hyperbolic spaces. Nonlinear Anal. 15, 537–558 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Reich S., Zaslavski A. J.: Convergence of Krasnoselskii-Mann iterations of nonexpansive operators. Math. Comput. Modelling 32, 1423–1431 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shafrir I.: The approximate fixed point property in Banach and hyperbolic spaces. Israel J. Math. 71, 211–223 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simeon Reich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reich, S., Zaslavski, A.J. Approximate fixed points of nonexpansive mappings in unbounded sets. J. Fixed Point Theory Appl. 13, 627–632 (2013). https://doi.org/10.1007/s11784-013-0121-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-013-0121-8

Mathematics Subject Classification

Keywords

Navigation