Advertisement

Rational cohomology of the free loop space of a simply connected 4-manifold

  • A. Yu. Onishchenko
  • Th. Yu. PopelenskyEmail author
Article
  • 98 Downloads

Abstract

The purpose of this paper is to calculate the rational cohomology \({H^{\ast}(X^{{S}^{1}} ; \mathbb{Q})}\) of the free loop space for a simply connected closed 4-manifold X. We use minimal models, so the starting point is the cohomology algebra \({H^{\ast}(X; \mathbb{Q})}\) which depends only on the second Betti number b 2 and the signature of X itself. Calculations of \({H^{\ast}(X^{{S}^{1}} ; \mathbb{Q})}\) for b 2 ≤ 2 are known. We study the case b 2 > 2. We obtain an explicit formula for Poincaré series of the space \({X^{{S}^{1}}}\), with the second Betti number b 2 as a parameter.

Mathematics Subject Classification

55R20 55T35 55P50 55P62 

Keywords

Free loop space spectral sequence rational homology Sullivan model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babenko I (1980). Analytic properties of Poincaré series of a loop space. Mat. Zametki 27: 751–765zbMATHMathSciNetGoogle Scholar
  2. 2.
    Babenko. I. (1979). On real homotopy properties of complete intersections. Izv. Akad. Nauk SSSR Ser. Mat. 43: 1004–1024MathSciNetGoogle Scholar
  3. 3.
    D. W. Barnes, Spectral sequence constructors in algebra and topology. Mem. Amer. Math. Soc. 53 (1985), viii+174.Google Scholar
  4. 4.
    R. Bott and L. Tu, Differential Forms in Algebraic Topology. Grad. Texts in Math. 82, Springer-Verlag, New York, 1982.Google Scholar
  5. 5.
    M. Chas and D. Sullivan, String topology. Preprint, arXiv:math/9911159.Google Scholar
  6. 6.
    R. Cohen, J. Jones and J. Yan, The loop homology algebra of spheres and projective spaces. In: Categorical Decomposition Techniques in Algebraic Topology (Isle of Skye, 2001), Progr. Math. 215, Birkhäuser, Basel, 2004, 77–92.Google Scholar
  7. 7.
    Dress A. (1967). Zur Spectralsequenz von Faserungen. Invent. Math. 3: 172–178zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Y. Félix, S. Halperin and J. C. Thomas, Rational Homotopy Theory. Grad. Texts in Math. 205, Springer-Verlag, New York, 2001.Google Scholar
  9. 9.
    Y. Félix, J. C. Thomas and M. Vigué-Poirrier, Loop homology algebra of a closed manifold. Preprint, arXiv:math/0203137.Google Scholar
  10. 10.
    A. T. Fomenko, D. B. Fuchs and V. L. Gutenmacher, Homotopic Topology. Akademiai Kiado, Budapest, 1986.Google Scholar
  11. 11.
    Ph. Griffiths and J. Morgan, Rational homotopy theory and differential forms. Progress in Mathematics 16, Birkh¨auser Boston, Mass., 1981.Google Scholar
  12. 12.
    K. Kuribayashi and T. Yamaguchi, The cohomology algebra of certain free loop spaces. Fund. Math. 154 (1997), 57–73.Google Scholar
  13. 13.
    J. McCleary, A User’s Guide to Spectral Sequences. Cambridge Stud. Adv. Math. 58, Cambridge Univesity Press, Cambridge, 2001.Google Scholar
  14. 14.
    J. Milnor and J. C. Moore, On the structure of Hopf algebras. Ann. of Math. (2) 81 (1965), 211–264.Google Scholar
  15. 15.
    Neisendorfer J. (1978). Formal and coformal spaces. Illinois J. Math. 22: 565–580zbMATHMathSciNetGoogle Scholar
  16. 16.
    J. Neisendorfer, The rational homotopy groups of complete intersections. Illinois J. Math. 23 (1979), 175–182.Google Scholar
  17. 17.
    A. Yu. Onishchenko, On the center of the rational cohomology algebra of some loop spaces with respect to the Pontryagin product. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 208 (2008), 28–33.Google Scholar
  18. 18.
    A. Onishchenko and Th. Popelensky, On the equivalence of some spectral sequences for Serre fibrations. Sb. Math. 202 (2011), 547–570.Google Scholar
  19. 19.
    J. P. Serre, Homologie singulière des espaces fibrés. Applications. Ann. of Math. (2) 54 (1951), 425–505.Google Scholar
  20. 20.
    M. Vigué-Poirrier and D. Burghelea, A model for cyclic homology and algebraic K-theory of 1-connected topological spaces. J. Differential Geom. 22 (1985), 243–253.Google Scholar
  21. 21.
    Vigué-Poirrier M. and Sullivan D (1976). The homology theory of the closed geodesic problem. J. Differential Geom. 11: 633–644zbMATHGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Faculty of Mechanics and MathematicsMoscow State University (MSU)Leninskie GoryRussia

Personalised recommendations