Rational cohomology of the free loop space of a simply connected 4-manifold
Article
First Online:
- 98 Downloads
Abstract
The purpose of this paper is to calculate the rational cohomology \({H^{\ast}(X^{{S}^{1}} ; \mathbb{Q})}\) of the free loop space for a simply connected closed 4-manifold X. We use minimal models, so the starting point is the cohomology algebra \({H^{\ast}(X; \mathbb{Q})}\) which depends only on the second Betti number b 2 and the signature of X itself. Calculations of \({H^{\ast}(X^{{S}^{1}} ; \mathbb{Q})}\) for b 2 ≤ 2 are known. We study the case b 2 > 2. We obtain an explicit formula for Poincaré series of the space \({X^{{S}^{1}}}\), with the second Betti number b 2 as a parameter.
Mathematics Subject Classification
55R20 55T35 55P50 55P62Keywords
Free loop space spectral sequence rational homology Sullivan modelPreview
Unable to display preview. Download preview PDF.
References
- 1.Babenko I (1980). Analytic properties of Poincaré series of a loop space. Mat. Zametki 27: 751–765zbMATHMathSciNetGoogle Scholar
- 2.Babenko. I. (1979). On real homotopy properties of complete intersections. Izv. Akad. Nauk SSSR Ser. Mat. 43: 1004–1024MathSciNetGoogle Scholar
- 3.D. W. Barnes, Spectral sequence constructors in algebra and topology. Mem. Amer. Math. Soc. 53 (1985), viii+174.Google Scholar
- 4.R. Bott and L. Tu, Differential Forms in Algebraic Topology. Grad. Texts in Math. 82, Springer-Verlag, New York, 1982.Google Scholar
- 5.M. Chas and D. Sullivan, String topology. Preprint, arXiv:math/9911159.Google Scholar
- 6.R. Cohen, J. Jones and J. Yan, The loop homology algebra of spheres and projective spaces. In: Categorical Decomposition Techniques in Algebraic Topology (Isle of Skye, 2001), Progr. Math. 215, Birkhäuser, Basel, 2004, 77–92.Google Scholar
- 7.Dress A. (1967). Zur Spectralsequenz von Faserungen. Invent. Math. 3: 172–178zbMATHCrossRefMathSciNetGoogle Scholar
- 8.Y. Félix, S. Halperin and J. C. Thomas, Rational Homotopy Theory. Grad. Texts in Math. 205, Springer-Verlag, New York, 2001.Google Scholar
- 9.Y. Félix, J. C. Thomas and M. Vigué-Poirrier, Loop homology algebra of a closed manifold. Preprint, arXiv:math/0203137.Google Scholar
- 10.A. T. Fomenko, D. B. Fuchs and V. L. Gutenmacher, Homotopic Topology. Akademiai Kiado, Budapest, 1986.Google Scholar
- 11.Ph. Griffiths and J. Morgan, Rational homotopy theory and differential forms. Progress in Mathematics 16, Birkh¨auser Boston, Mass., 1981.Google Scholar
- 12.K. Kuribayashi and T. Yamaguchi, The cohomology algebra of certain free loop spaces. Fund. Math. 154 (1997), 57–73.Google Scholar
- 13.J. McCleary, A User’s Guide to Spectral Sequences. Cambridge Stud. Adv. Math. 58, Cambridge Univesity Press, Cambridge, 2001.Google Scholar
- 14.J. Milnor and J. C. Moore, On the structure of Hopf algebras. Ann. of Math. (2) 81 (1965), 211–264.Google Scholar
- 15.Neisendorfer J. (1978). Formal and coformal spaces. Illinois J. Math. 22: 565–580zbMATHMathSciNetGoogle Scholar
- 16.J. Neisendorfer, The rational homotopy groups of complete intersections. Illinois J. Math. 23 (1979), 175–182.Google Scholar
- 17.A. Yu. Onishchenko, On the center of the rational cohomology algebra of some loop spaces with respect to the Pontryagin product. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 208 (2008), 28–33.Google Scholar
- 18.A. Onishchenko and Th. Popelensky, On the equivalence of some spectral sequences for Serre fibrations. Sb. Math. 202 (2011), 547–570.Google Scholar
- 19.J. P. Serre, Homologie singulière des espaces fibrés. Applications. Ann. of Math. (2) 54 (1951), 425–505.Google Scholar
- 20.M. Vigué-Poirrier and D. Burghelea, A model for cyclic homology and algebraic K-theory of 1-connected topological spaces. J. Differential Geom. 22 (1985), 243–253.Google Scholar
- 21.Vigué-Poirrier M. and Sullivan D (1976). The homology theory of the closed geodesic problem. J. Differential Geom. 11: 633–644zbMATHGoogle Scholar
Copyright information
© Springer Basel 2013