Abstract
The aim of this survey is to give a profound introduction to equivariant degree theory, avoiding as far as possible technical details and highly theoretical background. We describe the equivariant degree and its relation to the Brouwer degree for several classes of symmetry groups, including also the equivariant gradient degree, and particularly emphasizing the algebraic, analytical, and topological tools for its effective calculation, the latter being illustrated by six concrete examples. The paper concludes with a brief sketch of the construction and interpretation of the equivariant degree.
Similar content being viewed by others
References
Adams J.F.: Lectures on Lie Groups. W. A. Benjamin, Inc., New York (1969)
S. Antonian, An equivariant theory of retracts. In: Aspects of Topology, London Math. Soc. Lecture Note Ser. 93, Cambridge University Press, Cambridge, 1985, 251–269.
J. Arpe, Berechnung sekundärer Koeffizientengruppen des SO(3) × S 1-äquivarianten Abbildungsgrades. Diploma thesis, University of Munich, 2001.
Balanov Z., Farzamirad M., Krawcewicz W.: Symmetric systems of van der Pol equations. Topol. Methods Nonlinear Anal. 27, 29–90 (2006)
Balanov Z., Farzamirad M., Krawcewicz W., Ruan H.: Applied equivariant degree, part II: Symmetric Hopf bifurcation for functional differential equations. Discrete Contin. Dyn. Syst. Ser. A 16, 923–960 (2006)
Balanov Z., Krawcewicz W.: Remarks on the equivariant degree theory. Topol. Methods Nonlinear Anal. 13, 91–103 (1999)
Z. Balanov and W. Krawcewicz, Symmetric Hopf bifurcation: Twisted degree approach. In: Handbook of Differential Equations: Ordinary Differential Equations. Vol. 4, Elsevier, Amsterdam, 2008, 1–131.
Balanov Z., Krawcewicz W., Ruan H.: Applied equivariant degree, part I: An axiomatic approach to primary degree. Discrete Contin. Dyn. Syst. Ser. A 15, 983–1016 (2006)
Balanov Z., Krawcewicz W., Ruan H.: Hopf bifurcation in a symmetric configuration of transmission lines. Nonlinear Anal. Real World Appl. 8, 1144–1170 (2007)
Z. Balanov, W. Krawcewicz and H. Ruan, Periodic solutions to O(2)-symmetric variational problems: O(2) × S 1-equivariant orthogonal degree approach. In: Proceedings of Conf. Nonlinear Analysis and Optimization (Haifa, 2008), Contemp. Math., American Mathematical Society, to appear.
Balanov Z., Krawcewicz W., Steinlein H.: Reduced SO(3) × S 1-equivariant degree with applications to symmetric bifurcation problems. Nonlinear Anal. 47, 1617–1628 (2001)
Balanov Z., Krawcewicz W., Steinlein H.: SO(3) × S 1-equivariant degree with applications to symmetric bifurcation problems: The case of one free parameter. Topol. Methods Nonlinear Anal. 20, 335–374 (2002)
Z. Balanov, W. Krawcewicz and H. Steinlein, Applied Equivariant Degree. AIMS Series on Differential Equations & Dynamical Systems 1, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006.
Balanov Z., Schwartzman E.: Morse complex, even functionals and asymptotically linear differential equations with resonance at infinity. Topol. Methods Nonlinear Anal. 12, 323–366 (1998)
T. Bartsch, Topological Methods for Variational Problems with Symmetries. Lecture Notes in Math. 1560, Springer, Berlin, 1993.
Bartsch T., Clapp M.: Critical point theory for indefinite functionals with symmetries. J. Funct. Anal. 138, 107–136 (1996)
T. Bartsch and A. Szulkin, Hamiltonian systems: Periodic and homoclinic solutions by variational methods. In: Handbook of Differential Equations: Ordinary Differential Equations, Vol. 2, Elsevier, Amsterdam, 2005, 77–146.
Benci V.: On critical point theory of indefinite functionals in the presence of symmetries. Trans. Amer. Math. Soc. 274, 533–572 (1982)
Benci V., Rabinowitz P.: Critical point theorems for indefinite functionals. Invent. Math. 52, 241–273 (1979)
Bredon G.E.: Introduction to Compact Transformation Groups. Academic Press, New York (1972)
Bröcker T., tom Dieck T.: Representations of Compact Lie Groups. Springer, New York (1985)
Buono P.-L., Golubitsky M.: Models of central pattern generators for quadruped locomotion. I. Primary gaits. J. Math. Biol. 42, 291–326 (2001)
K. C. Chang, Infinite-Dimensional Morse Theory and Multiple Solution Problems. Progr. Nonlinear Differential Equations Appl. 6, Birkhäuser, Boston, 1993.
Chossat P., Lauterbach R., Melbourne I.: Steady-state bifurcation with O(3)-symmetry. Arch. Ration. Mech. Anal. 113, 313–376 (1990)
Corbera M., Llibre J., Pérez-Chavela E.: Equilibrium points and central configurations for the Lennard-Jones 2- and 3-body problems. Celestial Mech. Dynam. Astronom. 89, 235–266 (2004)
Costa D.G., Magalhães C.A.: A variational approach to subquadratic perturbations of elliptic systems. J. Differential Equations 111, 103–122 (1994)
Costa D.G., Magalhães C.A.: A unified approach to a class of strongly indefinite functionals. J. Differential Equations 125, 521–547 (1996)
Dancer E.N.: A new degree for S 1-invariant gradient mappings and applications. Ann. Inst. H. Poincaré Anal. Non Linéaire 2, 329–370 (1985)
Dancer E.N.: Symmetries, degree, homotopy indices and asymptotically homogeneous problems. Nonlinear Anal. 6, 667–686 (1982)
Dancer E.N., Gȩba K., Rybicki S.M.: Classification of homotopy classes of equivariant gradient maps. Fund. Math. 185, 1–18 (2005)
Dancer E.N., Toland J.F.: The index change and global bifurcation for flows with a first integral. Proc. London Math. Soc. (3) 66, 539–567 (1993)
T. tom Dieck, Transformation Groups and Representation Theory. Lecture Notes in Math. 766, Springer, Berlin, 1979.
tom Dieck T.: Transformation Groups. Walter de Gruyter, Berlin (1987)
Dugundji J., Granas A.: Fixed Point Theory, Vol. I. PWN, Polish Scientific Publishers, Warsaw (1982)
Duistermaat J.J., Kolk J.A.C.: Lie Groups. Springer, Berlin (2000)
G. Dylawerski, An S 1-degree and S 1-maps between representation spheres. In: Algebraic Topology and Transformation Groups, T. tom Dieck (ed.), Lecture Notes in Math. 1361, Springer, Berlin, 1988, 14–28.
Dylawerski G., Gȩba K., Jodel J., Marzantowicz W.: An S 1-equivariant degree and the Fuller index. Ann. Polon. Math. 52, 243–280 (1991)
Erbe L.H., Krawcewicz W., Gȩba K., Wu J.: S 1-degree and global Hopf bifurcation theory of functional differential equations. J. Differential Equations 98, 277–298 (1992)
Fang G.: Morse indices of degenerate critical orbits and applications—perturbation methods in equivariant cases. Nonlinear Anal. 36, 101–118 (1999)
Fitzpatrick P.M., Pejsachowicz J., Recht L.: Spectral flow and bifurcation of critical points of strongly-indefinite functionals. I. General theory. J. Funct. Anal. 162, 52–95 (1999)
J. Fura, A. Ratajczak and H. Ruan, Existence of nonstationary periodic solutions of Γ-symmetric asymptotically linear autonomous Newtonian systems with degeneracy. Rocky Mountain J. Math., to appear.
Fura J., Ratajczak A., Rybicki S.: Existence and continuation of periodic solutions of autonomous Newtonian systems. J. Differential Equations 218, 216–252 (2005)
Fura J., Rybicki S.: Periodic solutions of second order Hamiltonian systems bifurcating from infinity. Ann. Inst. H. Poincaré Anal. Non Linéaire 24, 471–490 (2007)
K. Gȩba, Degree for gradient equivariant maps and equivariant Conley index. In: Topological Nonlinear Analysis, II (Frascati, 1995), Progr. Nonlinear Differential Equations Appl. 27, Birkhäuser, Boston, 1997, 247–272.
Gȩba K., Izydorek M., Pruszko A.: The Conley index in Hilbert spaces and its applications. Studia Math. 134, 217–233 (1999)
Gȩba K., Krawcewicz W., Wu J.H.: An equivariant degree with applications to symmetric bifurcation problems. I. Construction of the degree. Proc. London Math. Soc. 69, 377–398 (1994)
Gȩba K., Rybicki S.: Some remarks on the Euler ring U(G). J. Fixed Point Theory Appl. 3, 143–158 (2008)
A. Gołȩbiewska and S. Rybicki, Degree for invariant strongly indefinite functionals. Preprint.
Golubitsky M., Stewart I.: Hopf bifurcation in the presence of symmetry. Arch. Rational Mech. Anal. 87, 107–165 (1985)
M. Golubitsky and I. Stewart, Hopf bifurcation with dihedral group symmetry: Coupled nonlinear oscillators. In: Multiparameter Bifurcation Theory (Arcata, Calif., 1985), Contemp. Math. 56, American Mathematical Society, Providence, RI, 1986, 131–173.
Golubitsky M., Stewart I., Buono P.-L., Collins J.J.: A modular network for legged locomotion. Phys. D 115, 56–72 (1998)
Golubitsky M., Stewart I., Buono P.-L., Collins J.J.: Symmetry in locomotor central pattern generators and animal gaits. Nature 401, 693–695 (1999)
M. Golubitsky, I. N. Stewart and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. II. Applied Mathematical Sciences 69, Springer, New York, 1988.
Guo Z., Yu J.: Multiplicity results for periodic solutions to delay differential equations via critical point theory. J. Differential Equations 218, 15–35 (2005)
Ihrig E., Golubitsky M.: Pattern selection with O(3)-symmetry. Phys. D 13, 1–33 (1984)
J. Ize, Topological bifurcation. In: Topological Nonlinear Analysis, Progr. Nonlinear Differential Equations Appl. 15, Birkhäuser, Boston, 1995, 341–463.
J. Ize, Equivariant degree. In: Handbook of Topological Fixed Point Theory, Springer, Dordrecht, 2005, 331–337.
Ize J., Massabò I., Vignoli A.: Degree theory for equivariant maps. I. Trans. Amer. Math. Soc. 315, 433–510 (1989)
J. Ize, I. Massabò and A. Vignoli, Degree theory for equivariant maps, the general S 1-action. Mem. Amer. Math. Soc. 100 (1992), no. 481.
J. Ize and A. Vignoli, Equivariant Degree Theory. De Gruyter Series in Nonlinear Analysis and Applications 8, Walter de Gruyter, Berlin, 2003.
Izydorek M.: Equivariant Conley index in Hilbert spaces and applications to strongly indefinite problems. Nonlinear Anal. 51, 33–66 (2002)
Kawakubo K.: The Theory of Transformation Groups. The Clarendon Press, Oxford University Press, New York (1991)
Komiya K.: The Lefschetz number for equivariant maps. Osaka J. Math. 24, 299–305 (1987)
Kosniowski C.: Equivariant cohomology and stable cohomotopy. Math. Ann. 210, 83–104 (1974)
M. A. Krasnosel’skiĭ and P. P. Zabreĭko, Geometrical Methods of Nonlinear Analysis. Grundlehren der mathematischen Wissenschaften 263, Springer, Berlin, 1984.
Krawcewicz W., Vivi P., Wu J.: Computational formulae of an equivariant degree with applications to symmetric bifurcations. Nonlinear Stud. 4, 89–119 (1997)
Krawcewicz W., Vivi P., Wu J.: Hopf bifurcations of functional differential equations with dihedral symmetries. J. Differential Equations 146, 157–184 (1998)
W. Krawcewicz and J. Wu, Theory of Degrees with Applications to Bifurcations and Differential Equations. Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, New York, 1997.
Krawcewicz W., Wu J.: Theory and applications of Hopf bifurcations in symmetric functional-differential equations. Nonlinear Anal. 35, 845–870 (1999)
W. Krawcewicz, J. Wu and H. Xia, Global Hopf bifurcation theory for condensing fields and neutral equations with applications to lossless transmission problems. Canad. Appl. Math. Quart. 1 (1993), 167–220.
Kryszewski W., Szulkin A.: An infinite-dimensional Morse theory with applications. Trans. Amer. Math. Soc. 349, 3181–3234 (1997)
A. Kushkuley and Z. Balanov, Geometric Methods in Degree Theory for Equivariant Maps. Lecture Notes in Math. 1632, Springer, Berlin, 1996.
L. G. Lewis Jr., J. P. May, M. Steinberger and J. E. McClure, Equivariant Stable Homotopy Theory. Lecture Notes in Math. 1213, Springer, Berlin, 1986.
W. Lück, The equivariant degree. In: Algebraic Topology and Transformation Groups (Göttingen, 1987), Lecture Notes in Math. 1361, Springer, Berlin, 1988, 123–166.
Marzantowicz W., Prieto C.: Computation of the equivariant 1-stem. Nonlinear Anal. 63, 513–524 (2005)
Marzantowicz W., Prieto C., Rybicki S.: Periodic solutions of symmetric autonomous Newtonian systems. J. Differential Equations 244, 916–944 (2008)
Y. Matsumoto, An Introduction to Morse Theory. Translations of Mathematical Monographs 208, American Mathematical Society, Providence, RI, 2002.
J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems. Applied Mathematical Sciences 74, Springer, New York, 1989.
Mayer K.H.: G-invariante Morse-Funktionen. Manuscripta Math. 63, 99–114 (1989)
Nagumo M.: Degree of mapping in convex linear topological spaces. Amer. J. Math. 73, 497–511 (1951)
Namboodiri U.: Equivariant vector fields on spheres. Trans. Amer. Math. Soc. 278, 431–460 (1983)
Palis J., de Melo W.: Geometric Theory of Dynamical Systems. An Introduction. Springer, New York (1982)
Parusiński A.: Gradient homotopies of gradient vector fields. Studia Math. 96, 73–80 (1990)
Pinto C.M.A., Golubitsky M.: Central pattern generators for bipedal locomotion. J. Math. Biol. 53, 474–489 (2006)
Rabinowitz P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971)
Rabinowitz P.H.: Periodic solutions of Hamiltonian systems. Comm. Pure Appl. Math. 31, 157–184 (1978)
P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conference Series in Mathematics 65, American Mathematical Society, Providence, RI, 1986.
Radzki W.: Degenerate branching points of autonomous Hamiltonian systems. Nonlinear Anal. 55, 153–166 (2003)
Radzki W., Rybicki S.: Degenerate bifurcation points of periodic solutions of autonomous Hamiltonian systems. J. Differential Equations 202, 284–305 (2004)
Ruan H., Rybicki S.: Applications of equivariant degree for gradient maps to symmetric Newtonian systems. Nonlinear Anal. 68, 1479–1516 (2008)
Y. Rudyak, On Thom spectra, Orientability, and Cobordism. Corr. 2nd printing, Springer, Berlin, 2007.
S. Rybicki, A degree for S 1-equivariant orthogonal maps and its applications to bifurcation theory. Nonlinear Anal. 23 (1994), 83–102.
Rybicki S.: Applications of degree for S 1-equivariant gradient maps to variational nonlinear problems with S 1-symmetries. Topol. Methods Nonlinear Anal. 9, 383–417 (1997)
Rybicki S.: Degree for S 1-equivariant strongly indefinite functionals. Nonlinear Anal. 43, 1001–1017 (2001)
S. Rybicki, Bifurcations of solutions of SO(2)-symmetric nonlinear problems with variational structure. In: Handbook of Topological Fixed Point Theory, R. Brown, M. Furi, L. Górniewicz and B. Jiang (eds.), Springer, Dordrecht, 2005, 339–372.
Rybicki S.: Degree for equivariant gradient maps. Milan J. Math. 73, 103–144 (2005)
Spanier E.H.: Algebraic Topology. McGraw-Hill, New York (1966)
H. Steinlein, Borsuk’s antipodal theorem and its generalizations and applications: A survey. In: Méthodes topologiques en analyse non linéaire, Sém. Math. Sup. 95, Presses Univ. Montréal, Montreal, QC, 1985, 166–235.
R. E. Stong, Notes on Cobordism Theory. Princeton University Press; University of Tokyo Press, 1968.
H. Ulrich, Fixed Point Theory of Parametrized Equivariant maps. Lecture Notes in Math. 1343, Springer, Berlin, 1988.
Wasserman A.G.: Equivariant differential topology. Topology 8, 127–150 (1969)
J. Wu, Theory and Applications of Partial Functional-Differential Equations. Applied Mathematical Sciences 119, Springer, New York, 1996.
Author information
Authors and Affiliations
Corresponding author
Additional information
Dedicated to Stephen Smale
Rights and permissions
About this article
Cite this article
Balanov, Z., Krawcewicz, W., Rybicki, S. et al. A short treatise on the equivariant degree theory and its applications. J. Fixed Point Theory Appl. 8, 1–74 (2010). https://doi.org/10.1007/s11784-010-0033-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11784-010-0033-9