Skip to main content
Log in

Fixed points indices and period-doubling cascades

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

Period-doubling cascades are among the most prominent features of many smooth one-parameter families of maps, \({F : \mathbb{R}\times\mathfrak{M} \rightarrow \mathfrak{M},}\) where \({\mathfrak{M}}\) is a locally compact manifold without boundary, typically \({\mathbb{R}^N}\). In particular, we investigate F(μ, ·) for \({\mu \in J = [\mu_{1}, \mu_{2}]}\), when F(μ 1, ·) has only finitely many periodic orbits while F(μ 2, ·) has exponential growth of the number of periodic orbits as a function of the period. For generic F, under additional hypotheses, we use a fixed point index argument to show that there are infinitely many “regular” periodic orbits at μ 2. Furthermore, all but finitely many of these regular orbits at μ 2 are tethered to their own period-doubling cascade. Specifically, each orbit ρ at μ 2 lies in a connected component C(ρ) of regular orbits in \({J \times \mathfrak{M}}\); different regular orbits typically are contained in different components, and each component contains a period-doubling cascade. These components are one-manifolds of orbits, meaning that we can reasonably say that an orbit ρ is “tethered” or “tied” to a unique cascade. When F(μ 2) has horseshoe dynamics, we show how to count the number of regular orbits of each period, and hence the number of cascades in \({J \times \mathfrak{M}}\).

As corollaries of our main results, we give several examples, we prove that the map in each example has infinitely many cascades, and we count the cascades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. Bora and D. Sarmah, Parametric excitation and chaos through dustcharge fluctuation in a dusty plasma. Preprint, arXiv:0708.0684, 2007.

  2. Tufillaro N.B., Abbott T., Reilly J.: An Experimental Approach to Nonlinear Dynamics and Chaos. Addison-Wesley, Redwood City, CA (1992)

    MATH  Google Scholar 

  3. J. Buchler, Nonlinear pulsations of convective stellar models. In: The Impact of Large-Scale Surveys on Pulsating Star Research, ASP Conference Series 203, 2000, 343–355.

  4. Carpinteri A., Pugno N.: Towards chaos in vibrating damaged structures, Part 1: Theory and period doubling cascade. J. Appl. Mech. 72, 511–518 (2005)

    Article  MATH  Google Scholar 

  5. P. Collet and J.-P. Eckmann, Iterated maps on the interval as dynamical systems. Progress in Physics 1, Birkhäuser Boston, Mass., 1980.

  6. Collet P., Eckmann J.-P., III O.L.: Universal properties of maps on an interval. Comm. Math. Phys. 76, 211–254 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  7. Collet P., Eckmann J.-P., Koch H.: On universality for area-preserving maps of the plane. Phys. D 3, 457–467 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  8. Collet P., Eckmann J.-P., Koch H.: Period doubling bifurcations for families of maps on R n. J. Statist. Phys. 25, 1–14 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  9. Collet P., Eckmann J.-P., Thomas L.: A note on the power spectrum of the iterates of Feigenbaum’s function. Comm. Math. Phys. 81, 261–265 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  10. Deng B.: Glucose-induced period-doubling cascade in the electrical activity of pancreatic β-cells. J. Math. Biol. 38, 21–78 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Epstein H.: New proofs of the existence of the Feigenbaum functions. Comm. Math. Phys. 106, 395–426 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  12. Feigenbaum M.J.: The universal metric properties of nonlinear transformations. J. Statist. Phys. 21, 669–706 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  13. Frankel M., Roytburd V., Sivashinsky G.: A sequence of period doublings and chaotic pulsations in a free boundary problem modeling thermal instabilities. SIAM J. Appl. Math. 54, 1101–1112 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Freire J.G., Field R.J., Gallas J.A.C.: Relative abundance and structure of chaotic behavior: The nonpolynomial Belousov-Zhabotinsky reaction kinetics. J. Chem. Phys. 131, 044105 (2009)

    Article  Google Scholar 

  15. Garstecki P., Fuerstman M.J., Whitesides G.M.: Nonlinear dynamics of a flow-focusing bubble generator: An inverted dripping faucet. Phys. Rev. Lett. 94, 234502 (2005)

    Article  Google Scholar 

  16. Gilet T., Bush J.W.: Chaotic bouncing of a droplet on a soap film. Phys. Rev. Lett. 102, 014501 (2009)

    Article  Google Scholar 

  17. Huang H., Pan J., McCormick P.G.: An investigation of chaotic phenomena in a vibratory ball milling system. In: Stonier, R., Yu, X.H. (eds) Complex Systems: Mechanism of Adaptation, pp. 373–379. IOS Press, Amsterdam (1994)

    Google Scholar 

  18. W. Krawcewicz and J. Wu, Theory of degrees with applications to bifurcations and differential equations. Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, New York, 1997.

  19. Kuznetsov S., Mailybaev A. A., Sataev I.: Birth of a new class of perioddoubling scaling behavior as a result of bifurcation in the renormalization equation. J. Statist. Phys. 130, 599–616 (2008)

    Article  MATH  Google Scholar 

  20. Kuznetsov S.P., Kuznetsov A.P., Sataev I.R.: Multiparameter critical situations, universality and scaling in two-dimensional period-doubling maps. J. Statist. Phys. 121, 697–748 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lanford E.: A computer-assisted proof of the Feigenbaum conjectures. Bull. Amer. Math. Soc. 6, 427–434 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  22. Larger L., Lacourt P.-A., Poinsot S., Hanna M.: From flow to map in an experimental high-dimensional electro-optic nonlinear delay oscillator. Phys. Rev. Lett. 95, 043903 (2005)

    Article  Google Scholar 

  23. May R.: Biological populations with nonoverlapping generations: Stable points, stable cycles, and chaos. Science 186, 645–647 (1974)

    Article  Google Scholar 

  24. J. Milnor and W. Thurston On iterated maps of the interval. In: Dynamical Systems (College Park, MD, 1986–87), Lecture Notes in Math. 1342, Springer, Berlin, 1988 465–563

  25. Myrberg P.: Sur l’itération des polynomes réels quadratiques. J. Math. Pures Appl. (9) 41, 339–351 (1962)

    MATH  MathSciNet  Google Scholar 

  26. Robinson C.: Dynamical Systems. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  27. E. Sander, J. A. Yorke Infinitely many cascades in route to chaos. Submitted for publication 2009

  28. Sander E., Yorke J.A.: Period-doubling cascades for large perturbations of Hénon families. J. Fixed Point Theory Appl. 6, 153–163 (2009)

    Article  MathSciNet  Google Scholar 

  29. E. Sander and J. A. Yorke, Period-doubling cascades galore. Submitted for publication, 2009.

  30. E. Sander and J. A. Yorke, Connecting period-doubling cascades to chaos. Preprint, 2010.

  31. Sijacic D.D., Ebert U., Rafatov I.: Period doubling in glow discharges: Local versus global differential conductivity. Phys. Rev. E 70, 056220 (2004)

    Article  Google Scholar 

  32. Simpson T.B., Liu J.M., Gavrielides A., Kovanis V., Alsing P.M.: Perioddoubling route to chaos in a semiconductor laser subject to optical injection. Appl. Phys. Lett. 64, 3539–3541 (1994)

    Article  Google Scholar 

  33. Yahata H.: Onset of chaos in the Rayleigh-Bénard convection. Progr. Theoret. Phys. Suppl. 79, 26–74 (1985)

    Article  MathSciNet  Google Scholar 

  34. Yorke J.A., Alligood K.T.: Cascades of period-doubling bifurcations: A prerequisite for horseshoes. Bull. Amer. Math. Soc. (N.S.) 9, 319–322 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  35. Yu J., Zhange R., Pan W., Schimansky-Geier L.: Period-doubling cascades and strange attractors in the triple-well \({\phi^6}\)-Van der Pol oscillator. Phys. Scr. 78, 025003 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelyn Sander.

Additional information

Dedicated to Steve Smale

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joglekar, M.R., Sander, E. & Yorke, J.A. Fixed points indices and period-doubling cascades. J. Fixed Point Theory Appl. 8, 151–176 (2010). https://doi.org/10.1007/s11784-010-0029-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-010-0029-5

Mathematics Subject Classification (2010)

Keywords

Navigation