Skip to main content
Log in

Toward a rapid and convenient nanoplastic quantification method in laboratory-scale study based on fluorescence intensity

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

The thorough investigation of nanoplastics (NPs) in aqueous environments requires efficient and expeditious quantitative analytical methods that are sensitive to environmentally relevant NP concentrations and convenient to employ. Optical analysis-based quantitative methods have been acknowledged as effective and rapid approaches for quantifying NP concentrations in laboratory-scale studies. Herein, we compared three commonly used optical response indicators, namely fluorescence intensity (FI), ultraviolet absorbance, and turbidity, to assess their performance in quantifying NPs. Furthermore, orthogonal experiments were conducted to evaluate the influence of various water quality parameters on the preferred indicator-based quantification method. The results revealed that FI exhibits the highest correlation coefficient (> 0.99) with NP concentration. Notably, the limit of quantification (LOQ) for various types of NPs is exceptionally low, ranging from 0.0089 to 0.0584 mg/L in ultrapure water, well below environmentally relevant concentrations. Despite variations in water quality parameters such as pH, salinity, suspended solids (SS), and humic acid, a robust relationship between detectable FI and NP concentration was identified. However, an increased matrix, especially SS in water samples, results in an enhanced LOQ for NPs. Nevertheless, the quantitative method remains applicable in real water bodies, especially in drinking water, with NP LOQ as low as 0.0157–0.0711 mg/L. This exceeds the previously reported detectable concentration for 100 nm NPs at 40 µg/mL using surface-enhanced Raman spectroscopy. This study confirms the potential of FI as a reliable indicator for the rapid quantification of NPs in aqueous environments, offering substantial advantages in terms of both convenience and cost-effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Sid-Cheikh M, Rowland S J, Stevenson K, Rouleau C, Henry T B, Thompson R C (2018). Uptake, whole-body distribution, and depuration of nanoplastics by the scallop Pecten maximus at environmentally realistic concentrations. Environmental Science & Technology, 52(24): 14480–14486

    Article  ADS  CAS  Google Scholar 

  • Aynard A, Courrèges C, Jiménez-Lamana J, Raad A, Miqueu C, Grassl B, Reynaud S (2023). Trace metal sorption on nanoplastics: an innovative analytical approach combining surface analysis and mass spectrometry techniques. Environmental Pollution, 323: 121229

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Yu H Q (2021). Advances in the characterization and monitoring of natural organic matter using spectroscopic approaches. Water Research, 190: 116759

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Li L, Hao L, Hong Y, Wang W (2022). Hormesis-like growth and photosynthetic physiology of marine diatom Phaeodactylum tricornutum Bohlin exposed to polystyrene microplastics. Frontiers of Environmental Science & Engineering, 16(1): 2

    Article  CAS  Google Scholar 

  • Chen Z, Liu J, Chen C, Huang Z (2020). Sedimentation of nanoplastics from water with Ca/Al dual flocculants: characterization, interface reaction, effects of pH and ion ratios. Chemosphere, 252: 126450

    Article  CAS  PubMed  Google Scholar 

  • da Costa J P, Santos P S M, Duarte A C, Rocha-Santos T (2016). (Nano)plastics in the environment: sources, fates and effects. Science of the Total Environment, 566–567: 15–26

    Article  ADS  PubMed  Google Scholar 

  • de Souza Machado A A, Kloas W, Zarfl C, Hempel S, Rillig M C (2018). Microplastics as an emerging threat to terrestrial ecosystems. Global Change Biology, 24(4): 1405–1416

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Dekiff J H, Remy D, Klasmeier J, Fries E (2014). Occurrence and spatial distribution of microplastics in sediments from Norderney. Environmental Pollution, 186: 248–256

    Article  CAS  PubMed  Google Scholar 

  • Dubaish F, Liebezeit G (2013). Suspended microplastics and black carbon particles in the Jade system, southern North Sea. Water, Air, and Soil Pollution, 224(2): 1352

    Article  ADS  Google Scholar 

  • Dümichen E, Barthel A K, Braun U, Bannick C G, Brand K, Jekel M, Senz R (2015). Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Research, 85: 451–457

    Article  PubMed  Google Scholar 

  • Dümichen E, Eisentraut P, Bannick C G, Barthel A K, Senz R, Braun U (2017). Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere, 174: 572–584

    Article  ADS  PubMed  Google Scholar 

  • Eriksen M, Maximenko N, Thiel M, Cummins A, Lattin G, Wilson S, Hafner J, Zellers A, Rifman S (2013). Plastic pollution in the South Pacific subtropical gyre. Marine Pollution Bulletin, 68(1–2): 71–76

    Article  CAS  PubMed  Google Scholar 

  • Fan X, Zou Y, Geng N, Liu J, Hou J, Li D, Yang C, Li Y (2021). Investigation on the adsorption and desorption behaviors of antibiotics by degradable MPs with or without UV ageing process. Journal of Hazardous Materials, 401: 123363

    Article  CAS  PubMed  Google Scholar 

  • Fries E, Dekiff J H, Willmeyer J, Nuelle M T, Ebert M, Remy D (2013). Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environmental Science. Processes & Impacts, 15(10): 1949–1956

    Article  CAS  Google Scholar 

  • Hart B T, Bailey P, Edwards R, Hortle K, James K, McMahon A, Meredith C, Swadling K (1991). A review of the salt sensitivity of the Australian freshwater biota. Hydrobiologia, 210(1–2): 105–144

    Article  Google Scholar 

  • Hernandez L M, Xu E G, Larsson H C E, Tahara R, Maisuria V B, Tufenkji N (2019). Plastic teabags release billions of microparticles and nanoparticles into Tea. Environmental Science & Technology, 53(21): 12300–12310

    Article  ADS  CAS  Google Scholar 

  • Isobe A, Iwasaki S, Uchida K, Tokai T (2019). Abundance of non-conservative microplastics in the upper ocean from 1957 to 2066. Nature Communications, 10(1): 417

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Kooi M, Nes E H v, Scheffer M, Koelmans A A (2017). Ups and downs in the ocean: effects of biofouling on vertical transport of microplastics. Environmental Science & Technology, 51(14): 7963–7971

    Article  ADS  CAS  Google Scholar 

  • Lapointe M, Farner J M, Hernandez L M, Tufenkji N (2020). Understanding and improving microplastic removal during water treatment: impact of coagulation and flocculation. Environmental Science & Technology, 54(14): 8719–8727

    Article  ADS  CAS  Google Scholar 

  • Lee H, Shim W J, Kwon J H (2014). Sorption capacity of plastic debris for hydrophobic organic chemicals. Science of the Total Environment, 470–471: 1545–1552

    Article  ADS  PubMed  Google Scholar 

  • Leslie H A, van Velzen M J M, Brandsma S H, Vethaak A D, Garcia-Vallejo J J, Lamoree M H (2022). Discovery and quantification of plastic particle pollution in human blood. Environment International, 163: 107199

    Article  CAS  PubMed  Google Scholar 

  • Li S, Liu H, Gao R, Abdurahman A, Dai J, Zeng F (2018). Aggregation kinetics of microplastics in aquatic environment: Complex roles of electrolytes, pH, and natural organic matter. Environmental Pollution, 237: 126–132

    Article  CAS  PubMed  Google Scholar 

  • Li W, Wu C, Xiong Z, Liang C, Li Z, Liu B, Cao Q, Wang J, Tang J, Li D (2022). Self-driven magnetorobots for recyclable and scalable micro/nanoplastic removal from nonmarine waters. Science Advances, 8: eade1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin S, Zhang H, Wang C, Su X L, Song Y, Wu P, Yang Z, Wong M H, Cai Z, Zheng C (2022). Metabolomics reveal nanoplastic-induced mitochondrial damage in human liver and lung cells. Environmental Science & Technology, 56(17): 12483–12493

    Article  ADS  CAS  Google Scholar 

  • Liu W, Tang H, Yang B, Li C, Chen Y, Huang T (2023). Molecular level insight into the different interaction intensity between microplastics and aromatic hydrocarbon in pure water and seawater. Science of the Total Environment, 862: 160786

    Article  ADS  CAS  PubMed  Google Scholar 

  • Luo Y, Li L, Feng Y, Li R, Yang J, Peijnenburg W J G M, Tu C (2022). Quantitative tracing of uptake and transport of submicrometre plastics in crop plants using lanthanide chelates as a dual-functional tracer. Nature Nanotechnology, 17(4): 424–431

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lv L, He L, Jiang S, Chen J, Zhou C, Qu J, Lu Y, Hong P, Sun S, Li C (2020). In situ surface-enhanced Raman spectroscopy for detecting microplastics and nanoplastics in aquatic environments. Science of the Total Environment, 728: 138449

    Article  ADS  CAS  PubMed  Google Scholar 

  • Mao Y, Li H, Huangfu X, Liu Y, He Q (2020). Nanoplastics display strong stability in aqueous environments: Insights from aggregation behaviour and theoretical calculations. Environmental Pollution, 258: 113760

    Article  CAS  PubMed  Google Scholar 

  • MEE (2020). Technical Guideline for the Development of Environmental Monitoring Analytical Method Standards, HJ 169-2020. Beijing: Ministry of Ecology and Environment of People’s Republic of China (in Chinese)

    Google Scholar 

  • Minella J P G, Merten G H, Reichert J M, Clarke R T (2008). Estimating suspended sediment concentrations from turbidity measurements and the calibration problem. Hydrological Processes, 22(12): 1819–1830

    Article  ADS  Google Scholar 

  • Murray A, Örmeci B (2020). Removal effectiveness of nanoplastics (< 400 nm) with separation processes used for water and wastewater treatment. Water, 12(3): 635

    Article  CAS  Google Scholar 

  • Rajala K, Grönfors O, Hesampour M, Mikola A (2020). Removal of microplastics from secondary wastewater treatment plant effluent by coagulation/flocculation with iron, aluminum and polyamine-based chemicals. Water Research, 183: 116045

    Article  CAS  PubMed  Google Scholar 

  • Ramirez Arenas L, Ramseier Gentile S, Zimmermann S, Stoll S (2021). Nanoplastics adsorption and removal efficiency by granular activated carbon used in drinking water treatment process. Science of the Total Environment, 791: 148175

    Article  ADS  CAS  PubMed  Google Scholar 

  • Sarcletti M, Park H, Wirth J, Englisch S, Eigen A, Drobek D, Vivod D, Friedrich B, Tietze R, Alexiou C, et al. (2021). The remediation of nano-/microplastics from water. Materials Today, 48: 38–46

    Article  CAS  Google Scholar 

  • Sendra M, Staffieri E, Yeste M P, Moreno-Garrido I, Gatica J M, Corsi I, Blasco J (2019). Are the primary characteristics of polystyrene nanoplastics responsible for toxicity and ad/absorption in the marine diatom Phaeodactylum tricornutum? Environmental Pollution, 249: 610–619

    Article  CAS  PubMed  Google Scholar 

  • Sgroi M, Gagliano E, Vagliasindi F G A, Roccaro P (2020). Inner filter effect, suspended solids and nitrite/nitrate interferences in fluorescence measurements of wastewater organic matter. Science of the Total Environment, 711: 134663

    Article  ADS  CAS  PubMed  Google Scholar 

  • Shams M, Alam I, Chowdhury I (2020). Aggregation and stability of nanoscale plastics in aquatic environment. Water Research, 171: 115401

    Article  CAS  PubMed  Google Scholar 

  • Strungaru S A, Jijie R, Nicoara M, Plavan G, Faggio C (2019). Micro-(nano)plastics in freshwater ecosystems: Abundance, toxicological impact and quantification methodology. Trends in Analytical Chemistry, 110: 116–128

    Article  CAS  Google Scholar 

  • Stutter M, Dawson J J C, Glendell M, Napier F, Potts J M, Sample J, Vinten A, Watson H (2017). Evaluating the use of in-situ turbidity measurements to quantify fluvial sediment and phosphorus concentrations and fluxes in agricultural streams. Science of the Total Environment, 607–608: 391–402

    Article  ADS  PubMed  Google Scholar 

  • Tang S, Lin L, Wang X, Feng A, Yu A (2020). Pb(II) uptake onto nylon microplastics: interaction mechanism and adsorption performance. Journal of Hazardous Materials, 386: 121960

    Article  CAS  PubMed  Google Scholar 

  • Thompson R C, Olsen Y, Mitchell R P, Davis A, Rowland S J, John A W G, McGonigle D, Russell A E (2004). Lost at sea: where is all the plastic? Science, 304(5672): 838

    Article  CAS  PubMed  Google Scholar 

  • Tian C, Akhtar I, Wang Q, Li Z, Shi B, Feng C, Wang D (2023). Effects of electrostatic neutralization of Keggin Fe13 on the removal of micro and nano plastic. Journal of Hazardous Materials, 443: 130175

    Article  CAS  PubMed  Google Scholar 

  • Trifuoggi M, Pagano G, Oral R, Pavičić-Hamer D, Burić P, Kovačić I, Siciliano A, Toscanesi M, Thomas P J, Paduano L, et al. (2019). Microplastic-induced damage in early embryonal development of sea urchin Sphaerechinus granularis. Environmental Research, 179: 108815

    Article  ADS  CAS  PubMed  Google Scholar 

  • USEPA (2023). Guidelines Establishing Test Procedures for the Analysis of Pollutants, 40 CFR Part 136. Washington, DC: United States Environmental Protection Agency

    Google Scholar 

  • Weber A, Schwiebs A, Solhaug H, Stenvik J, Nilsen A M, Wagner M, Relja B, Radeke H H (2022). Nanoplastics affect the inflammatory cytokine release by primary human monocytes and dendritic cells. Environment International, 163: 107173

    Article  CAS  PubMed  Google Scholar 

  • Yan R, Lin S, Jiang W, Yu X, Zhang L, Zhao W, Sui Q (2023). Effect of aggregation behavior on microplastic removal by magnetic Fe3O4 nanoparticles. Science of the Total Environment, 898: 165431

    Article  ADS  CAS  PubMed  Google Scholar 

  • Yuan H, Zhou X, Zhang Y L (2013). Degradation of acid pharmaceuticals in the UV/H2O2 process: effects of humic acid and inorganic salts. CLEAN-Soil, Air, Water, 41(1): 43–50

    Article  CAS  Google Scholar 

  • Zhang R, Chen Y, Ouyang X, Weng L, Ma J, Shafiqul Islam M, Li Y (2023). Resolving natural organic matter and nanoplastics in binary or ternary systems via UV-Vis analysis. Journal of Colloid and Interface Science, 632: 335–344

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Pasquinelli M, Li Y (2022). Microplastic and nanoplastic pollution: characterization, transport, fate, and remediation strategies. Frontiers of Environmental Science & Engineering, 16(1): 12

    Article  Google Scholar 

Download references

Acknowledgements

This research was partly supported by the National Natural Science Foundation of China (Nos. 22376066 and 22076045), the Science and Technology Commission of Shanghai Municipality’s zhongYangfan Special Project (China) (No. 23YF1408400), the Postdoctoral Innovation Talents Support Program (China) (No. BX20230123), and the Fundamental Research Funds for the Central Universities (China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Sui.

Ethics declarations

Conflict of Interests The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Highlights

• Performance of optical analysis was assessed for nanoplastic (NP) quantification.

• Fluorescence intensity (FI) had high correlation coefficient with NP concentration.

• Quantification limit of the method is below environmental concentrations of NPs.

• Quantification limit only slightly increased with increased matrix in water samples.

• The analytical method offered advantages in both convenience and cost-effectiveness.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, R., Lin, S., Ding, Q. et al. Toward a rapid and convenient nanoplastic quantification method in laboratory-scale study based on fluorescence intensity. Front. Environ. Sci. Eng. 18, 61 (2024). https://doi.org/10.1007/s11783-024-1821-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-024-1821-6

Keywords

Navigation