Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Frontiers of Environmental Science & Engineering
  3. Article

Application of Fe(VI) in abating contaminants in water: State of art and knowledge gaps

  • Review Article
  • Open access
  • Published: 04 November 2020
  • Volume 15, article number 80, (2021)
  • Cite this article
Download PDF

You have full access to this open access article

Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript
Application of Fe(VI) in abating contaminants in water: State of art and knowledge gaps
Download PDF
  • Shuchang Wang1,2,
  • Binbin Shao1,2,
  • Junlian Qiao1,2,3 &
  • …
  • Xiaohong Guan1,2,3 
  • 2146 Accesses

  • 69 Citations

  • 3 Altmetric

  • Explore all metrics

Abstract

The past two decades have witnessed the rapid development and wide application of Fe(VI) in the field of water de-contamination because of its environmentally benign character. Fe(VI) has been mainly applied as a highly efficient oxidant/disinfectant for the selective elimination of contaminants. The in situ generated iron(III) (hydr)oxides with the function of adsorption/coagulation can further increase the removal of contaminants by Fe(VI) in some cases. Because of the limitations of Fe(VI) per se, various modified methods have been developed to improve the performance of Fe(VI) oxidation technology. Based on the published literature, this paper summarized the current views on the intrinsic properties of Fe(VI) with the emphasis on the self-decay mechanism of Fe(VI). The applications of Fe (VI) as a sole oxidant for decomposing organic contaminants rich in electron-donating moieties, as a bi-functional reagent (both oxidant and coagulant) for eliminating some special contaminants, and as a disinfectant for inactivating microorganisms were systematically summarized. Moreover, the difficulties in synthesizing and preserving Fe(VI), which limits the large-scale application of Fe (VI), and the potential formation of toxic byproducts during Fe(VI) application were presented. This paper also systematically reviewed the important nodes in developing methods to improve the performance of Fe(VI) as oxidant or disinfectant in the past two decades, and proposed the future research needs for the development of Fe(VI) technologies.

Article PDF

Download to read the full article text

Similar content being viewed by others

Field Study V: Combined Oxidation Technology Using Ferrates (FeIV–VI) and Hydrogen Peroxide for Rapid and Effective Remediation of Contaminated Water—Comprehensive Practically Focused Study

Chapter © 2020

Effective degradation of high-concentration organic pollutants under broad pH range with Fe(II, III)-doped bio-carbon through sono-Fenton oxidation

Article 07 November 2023

Novel approach to determination of Fe(II) using a flow system with direct-injection detector

Article Open access 24 July 2020

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Corrosion
  • Disposal Technology and Management
  • Electrochemistry
  • Iron
  • Pollution Remediation
  • Water Treatment
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Ashoori N, Teixido M, Spahr S, Lefevre G H, Sedlak D L, Luthy R G (2019). Evaluation of pilot-scale biochar-amended woodchip bioreactors to remove nitrate, metals, and trace organic contaminants from urban stormwater runoff. Water Research, 154: 1–11

    Article  CAS  Google Scholar 

  • Aslani H, Nasseri S, Nabizadeh R, Mesdaghinia A, Alimohammadi M, Nazmara S (2017). Haloacetic acids degradation by an efficient Ferrate/UV process: Byproduct analysis, kinetic study, and application of response surface methodology for modeling and optimization. Journal of Environmental Management, 203: 218–228

    Article  CAS  Google Scholar 

  • Bataineh H, Pestovsky O, Bakac A (2012). pH-induced mechanistic changeover from hydroxyl radicals to iron(IV) in the Fenton reaction. Chemical Science (Cambridge), 3(5): 1594–1599

    Article  CAS  Google Scholar 

  • Carr J D (2008). Kinetics and product identification of oxidation by ferrate(VI) of water and aqueous nitrogen containing solutes. In: ACS Symposium Series: American Chemical Society. Washington DC: American Chemical Society, 189–196 (Ferrates)

    Google Scholar 

  • Chen B Y, Kuo H W, Sharma V K, Den W (2019a). Chitosan encapsulation of ferrate(VI) for controlled release to water: Mechanistic insights and degradation of organic contaminant. Scientific Reports, 9(1): 18268

    Article  CAS  Google Scholar 

  • Chen G, Lam W W Y, Lo P K, Man W L, Chen L, Lau K C, Lau T C (2018a). Mechanism of water oxidation by ferrate(VI) at pH 7–9. Chemistry: A European Journal, 24(70): 18735–18742

    Article  CAS  Google Scholar 

  • Chen J, Qi Y, Pan X, Wu N, Zuo J, Li C, Qu R, Wang Z, Chen Z (2019b). Mechanistic insights into the reactivity of Ferrate(VI) with phenolic compounds and the formation of coupling products. Water Research, 158: 338–349

    Article  CAS  Google Scholar 

  • Chen J, Xu X, Zeng X, Feng M, Qu R, Wang Z, Nesnas N, Sharma V K (2018b). Ferrate(VI) oxidation of polychlorinated diphenyl sulfides: Kinetics, degradation, and oxidized products. Water Research, 143: 1–9

    Article  CAS  Google Scholar 

  • Conley D J, Paerl H W, Howarth R W, Boesch D F, Seitzinger S P, Havens K E, Lancelot C, Likens G E (2009). Controlling eutrophication: Nitrogen and phosphorus. Science, 323(5917): 1014–1015

    Article  CAS  Google Scholar 

  • Czaplicka M, Bratek Ł, Jaworek K, Bonarski J, Pawlak S (2014). Photo-oxidation of p-arsanilic acid in acidic solutions: Kinetics and the identification of by-products and reaction pathways. Chemical Engineering Journal, 243: 364–371

    Article  CAS  Google Scholar 

  • de Figueiredo D R, Azeiteiro U M, Esteves S M, Gonçalves F J M, Pereira M J (2004). Microcystin-producing blooms:A serious global public health issue. Ecotoxicology and Environmental Safety, 59(2): 151–163

    Article  CAS  Google Scholar 

  • Dedushenko S K, Perfiliev Y D, Saprykin A A (2009). Mössbauer Study of Iron in High Oxidation States in the K-Fe-O System. Berlin: Springer Berlin Heidelberg, 877–882

    Google Scholar 

  • Deng Y, Wu M, Zhang H, Zheng L, Acosta Y, Hsu T T D (2017). Addressing harmful algal blooms (HABs) impacts with ferrate(VI): Simultaneous removal of algal cells and toxins for drinking water treatment. Chemosphere, 186: 757–761

    Article  CAS  Google Scholar 

  • Dong H, Qiang Z, Lian J, Qu J (2017). Promoted oxidation of diclofenac with ferrate (Fe(VI)): Role of ABTS as the electron shuttle. Journal of Hazardous Materials, 336: 65–70

    Article  CAS  Google Scholar 

  • Dong H, Qiang Z, Liu S, Li J, Yu J, Qu J (2018). Oxidation of iopamidol with ferrate (Fe(VI)): Kinetics and formation of toxic iodinated disinfection by-products. Water Research, 130: 200–207

    Article  CAS  Google Scholar 

  • Fan J, Lin B H, Chang C W, Zhang Y, Lin T F (2018). Evaluation of potassium ferrate as an alternative disinfectant on cyanobacteria inactivation and associated toxin fate in various waters. Water Research, 129: 199–207

    Article  CAS  Google Scholar 

  • Feng M, Cizmas L, Wang Z, Sharma V K (2017a). Activation of ferrate (VI) by ammonia in oxidation of flumequine: Kinetics, transformation products, and antibacterial activity assessment. Chemical Engineering Journal, 323: 584–591

    Article  CAS  Google Scholar 

  • Feng M, Cizmas L, Wang Z, Sharma V K (2017b). Synergistic effect of aqueous removal of fluoroquinolones by a combined use of peroxymonosulfate and ferrate(VI). Chemosphere, 177: 144–148

    Article  CAS  Google Scholar 

  • Feng M, Jinadatha C, Mcdonald T J, Sharma V K (2018). Accelerated oxidation of organic contaminants by ferrate(VI): The overlooked role of reducing additives. Environmental Science & Technology, 52(19): 11319–11327

    Article  CAS  Google Scholar 

  • Feng M, Sharma V K (2018). Enhanced oxidation of antibiotics by ferrate(VI)-sulfur(IV) system: Elucidating multi-oxidant mechanism. Chemical Engineering Journal, 341: 137–145

    Article  CAS  Google Scholar 

  • Feng M, Wang X, Chen J, Qu R, Sui Y, Cizmas L, Wang Z, Sharma V K (2016). Degradation of fluoroquinolone antibiotics by ferrate(VI): Effects of water constituents and oxidized products. Water Research, 103: 48–57

    Article  CAS  Google Scholar 

  • Ghernaout D, Naceur M W (2012). Ferrate(VI): In situ generation and water treatment: A review. Desalination and Water Treatment, 30(1–3): 319–332

    Google Scholar 

  • Goff H, Murmann R K (1971). Mechanism of isotopic oxygen exchange and reduction of ferrate (VI) ion (FeO42−). Journal of the American Chemical Society, 93(23): 6058–6065

    Article  CAS  Google Scholar 

  • Gong T, Zhang X (2013). Determination of iodide, iodate and organo-iodine in waters with a new total organic iodine measurement approach. Water Research, 47(17): 6660–6669

    Article  CAS  Google Scholar 

  • Goodwill J E, Mai X, Jiang Y, Reckhow D A, Tobiason J E (2016). Oxidation of manganese(II) with ferrate: Stoichiometry, kinetics, products and impact of organic carbon. Chemosphere, 159: 457–464

    Article  CAS  Google Scholar 

  • Guan X, Dong H, Wang H, Fan W, Qiao J (2016). A method for rapid removal of organic pollutants from water by intermediate iron. CN105600911A. Beijing: State Intellectual Property Office of the People’s Republic of China

    Google Scholar 

  • Gurol M D, Bremen W M (1985). Kinetics and mechanism of ozonation of free cyanide species in water. Environmental Science & Technology, 19(9): 804–809

    Article  CAS  Google Scholar 

  • Han Q, Dong W, Wang H, Liu T, Tian Y, Song X (2018). Degradation of tetrabromobisphenol A by ferrate(VI) oxidation: Performance, inorganic and organic products, pathway and toxicity control. Chemosphere, 198: 92–102

    Article  CAS  Google Scholar 

  • Hu L, Martin H M, Arce-Bulted O, Sugihara M N, Keating K A, Strathmann T J (2009). Oxidation of carbamazepine by Mn(VII) and Fe(VI): Reaction kinetics and mechanism. Environmental Science & Technology, 43(2): 509–515

    Article  CAS  Google Scholar 

  • Hu L, Page M A, Sigstam T, Kohn T, Marinas B J, Strathmann T J (2012). Inactivation of bacteriophage MS2 with potassium ferrate (VI). Environmental Science & Technology, 46(21): 12079–12087

    Article  CAS  Google Scholar 

  • Huang H, Sommerfeld D, Dunn B C, Eyring E M, Lloyd C R (2001a). Ferrate(VI) oxidation of aqueous phenol: Kinetics and mechanism. Journal of Physical Chemistry A, 105(14): 3536–3541

    Article  CAS  Google Scholar 

  • Huang H, Sommerfeld D, Dunn B C, Lloyd C R, Eyring E M (2001b). Ferrate(VI) oxidation of aniline. Journal of the Chemical Society, Dalton Transactions: Inorganic Chemistry, (8): 1301–1305

  • Huang X, Deng Y, Liu S, Song Y, Li N, Zhou J (2016). Formation of bromate during ferrate (VI) oxidation of bromide in water. Chemosphere, 155: 528–533

    Article  CAS  Google Scholar 

  • Huang Z S, Wang L, Liu Y L, Jiang J, Xue M, Xu C B, Zhen Y F, Wang Y C, Ma J (2018). Impact of phosphate on ferrate oxidation of organic compounds: An underestimated oxidant. Environmental Science & Technology, 52(23): 13897–13907

    Article  CAS  Google Scholar 

  • Islam A, Jeon D, Ra J, Shin J, Kim T Y, Lee Y (2018). Transformation of microcystin-LR and olefinic compounds by ferrate(VI): Oxidative cleavage of olefinic double bonds as the primary reaction pathway. Water Research, 141: 268–278

    Article  CAS  Google Scholar 

  • Jain A, Sharma V K, Mbuya O S (2009). Removal of arsenite by Fe (VI), Fe (VI)/Fe (III), and Fe (VI)/Al (III) salts: Effect of pH and anions. Journal of Hazardous Materials, 169(1–3): 339–344

    Article  CAS  Google Scholar 

  • Jiang J Q (2007). Research progress in the use of ferrate(VI) for the environmental remediation. Journal of Hazardous Materials, 146(3): 617–623

    Article  CAS  Google Scholar 

  • Jiang W, Chen L, Batchu S R, Gardinali P R, Jasa L, Marsalek B, Zboril R, Dionysiou D D, O’shea K E, Sharma V K (2014). Oxidation of microcystin-LR by ferrate(VI): Kinetics, degradation pathways, and toxicity assessments. Environmental Science & Technology, 48(20): 12164–12172

    Article  CAS  Google Scholar 

  • Jiang Y, Goodwill J E, Tobiason J E, Reckhow D A (2015). Effect of different solutes, natural organic matter, and particulate Fe(III) on ferrate(VI) decomposition in aqueous solutions. Environmental Science & Technology, 49(5): 2841–2848

    Article  CAS  Google Scholar 

  • Jiang Y, Goodwill J E, Tobiason J E, Reckhow D A (2016a). Bromide oxidation by ferrate(VI): The formation of active bromine and bromate. Water Research, 96: 188–197

    Article  CAS  Google Scholar 

  • Jiang Y, Goodwill J E, Tobiason J E, Reckhow D A (2016b). Impacts of ferrate oxidation on natural organic matter and disinfection byproduct precursors. Water Research, 96: 114–125

    Article  CAS  Google Scholar 

  • Johnson M D, Bernard J (1992). Kinetics and mechanism of the ferrate oxidation of sulfite and selenite in aqueous media. Inorganic Chemistry, 31(24): 5140–5142

    Article  CAS  Google Scholar 

  • Kamachi T, Kouno T, Yoshizawa K (2005). Participation of multi-oxidants in the pH dependence of the reactivity of ferrate(VI). The Journal of Organic Chemistry, 70(11): 4380–4388

    Article  CAS  Google Scholar 

  • Karlesa A, De Vera G A, Dodd M C, Park J, Espino M P, Lee Y (2014). Ferrate(VI) oxidation of beta-lactam antibiotics: Reaction kinetics, antibacterial activity changes, and transformation products. Environmental Science & Technology, 48(17): 10380–10389

    Article  CAS  Google Scholar 

  • Kepa U, Stanczyk-Mazanek E, Stepniak L (2008). The use of the advanced oxidation process in the ozone + hydrogen peroxide system for the removal of cyanide from water. Desalination, 223(1–3): 187–193

    Article  CAS  Google Scholar 

  • Kim J, Zhang T, Liu W, Du P, Dobson J T, Huang C (2019). Advanced oxidation process with peracetic acid and Fe(II) for contaminant degradation. Environmental Science & Technology, 53(22): 13312–13322

    Article  Google Scholar 

  • Kralchevska R P, Prucek R, Kolarik J, Tucek J, Machala L, Filip J, Sharma V K, Zboril R (2016a). Remarkable efficiency of phosphate removal: Ferrate(VI)-induced in situ sorption on core-shell nanoparticles. Water Research, 103: 83–91

    Article  CAS  Google Scholar 

  • Kralchevska R P, Sharma V K, Machala L, Zboril R (2016b). Ferrates (FeVI, FeV, and FeIV) oxidation of iodide: Formation of triiodide. Chemosphere, 144: 1156–1161

    Article  CAS  Google Scholar 

  • Kubiňáková E, Hives J, Gal M, Faskova A (2017). Effect of ferrate on green algae removal. Environmental Science and Pollution Research International, 24(27): 21894–21901

    Article  Google Scholar 

  • Lan B, Wang Y, Wang X, Zhou X, Kang Y, Li L (2016). Aqueous arsenic (As) and antimony (Sb) removal by potassium ferrate. Chemical Engineering Journal, 292: 389–397

    Article  CAS  Google Scholar 

  • Lane R F, Adams C D, Randtke S J, Carter R E Jr (2015). Chlorination and chloramination of bisphenol A, bisphenol F, and bisphenol A diglycidyl ether in drinking water. Water Research, 79: 68–78

    Article  CAS  Google Scholar 

  • Lee D G, Gai H (1993). Kinetics and mechanism of the oxidation of alcohols by ferrate ion. Canadian Journal of Chemistry, 71(9): 1394–1400

    Article  CAS  Google Scholar 

  • Lee Y, Cho M, Kim J Y, Yoon J (2004). Chemistry of ferrate (Fe(VI)) in aqueous solution and its applications as a green chemical. Journal of Industrial and Engineering Chemistry, 10(1): 161–171

    CAS  Google Scholar 

  • Lee Y, Escher B I, von Gunten U (2008). Efficient removal of estrogenic activity during oxidative treatment of waters containing steroid estrogens. Environmental Science & Technology, 42(17): 6333–6339

    Article  CAS  Google Scholar 

  • Lee Y, Kissner R, von Gunten U (2014). Reaction of ferrate(VI) with ABTS and self-decay of ferrate(VI): Kinetics and mechanisms. Environmental Science & Technology, 48(9): 5154–5162

    Article  CAS  Google Scholar 

  • Lee Y, Um I, Yoon J (2003). Arsenic(III) oxidation by iron(VI) (Ferrate) and subsequent removal of arsenic(V) by iron(III) coagulation. Environmental Science & Technology, 37(24): 5750–5756

    Article  CAS  Google Scholar 

  • Lee Y, von Gunten U (2010). Oxidative transformation of micro-pollutants during municipal wastewater treatment: Comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate VI, and ozone) and non-selective oxidants (hydroxyl radical). Water Research, 44(2): 555–566

    Article  CAS  Google Scholar 

  • Lee Y, Yoon J, von Gunten U (2005). Kinetics of the oxidation of phenols and phenolic endocrine disruptors during water treatment with ferrate (Fe(VI)). Environmental Science & Technology, 39(22): 8978–8984

    Article  CAS  Google Scholar 

  • Lee Y, Zimmermann S G, Kieu A T, von Gunten U (2009). Ferrate (Fe (VI)) application for municipal wastewater treatment: A novel process for simultaneous micropollutant oxidation and phosphate removal. Environmental Science & Technology, 43(10): 3831–3838

    Article  CAS  Google Scholar 

  • Li C, Li X Z, Graham N, Gao N Y (2008). The aqueous degradation of bisphenol A and steroid estrogens by ferrate. Water Research, 42(1–2): 109–120

    Article  CAS  Google Scholar 

  • Liang S, Zhu L, Hua J, Duan W, Yang P T, Wang S L, Wei C, Liu C, Feng C (2020). Fe2+/HClO reaction produces FeIVO2+: An enhanced advanced oxidation process. Environmental Science & Technology, 54(10): 6406–6414

    Article  CAS  Google Scholar 

  • Liu H, Chen J, Wu N, Xu X, Qi Y, Jiang L, Wang X, Wang Z (2019). Oxidative degradation of chlorpyrifos using ferrate(VI): Kinetics and reaction mechanism. Ecotoxicology and Environmental Safety, 170: 259–266

    Article  CAS  Google Scholar 

  • Liu J, Lujan H, Dhungana B, Hockaday W C, Sayes C M, Cobb G P, Sharma V K (2020). Ferrate(VI) pretreatment before disinfection: An effective approach to controlling unsaturated and aromatic halo-disinfection byproducts in chlorinated and chloraminated drinking waters. Environment International, 138: 105641

    Article  CAS  Google Scholar 

  • Liu Y, Wang L, Wang X, Huang Z, Xu C, Yang T, Zhao X, Qi J, Ma J (2017). Highly efficient removal of trace thallium from contaminated source waters with ferrate: Role of in situ formed ferric nanoparticle. Water Research, 124: 149–157

    Article  CAS  Google Scholar 

  • Loeb S K, Alvarez P J J, Brame J A, Cates E L, Choi W, Crittenden J, Dionysiou D D, Li Q, Li-Puma G, Quan X, Sedlak D L, David Waite T, Westerhoff P, Kim J H (2019). The technology horizon for photocatalytic water treatment: Sunrise or sunset? Environmental Science & Technology, 53(6): 2937–2947

    Article  CAS  Google Scholar 

  • Loegager T, Holcman J, Sehested K, Pedersen T (1992). Oxidation of ferrous ions by ozone in acidic solutions. Inorganic Chemistry, 31(17): 3523–3529

    Article  CAS  Google Scholar 

  • Luo C, Feng M, Sharma V K, Huang C H (2019). Oxidation of pharmaceuticals by ferrate(VI) in hydrolyzed urine: Effects of major inorganic constituents. Environmental Science & Technology, 53(9): 5272–5281

    Article  CAS  Google Scholar 

  • Luo C, Feng M, Sharma V K, Huang C H (2020). Revelation of ferrate (VI) unimolecular decay under alkaline conditions: Investigation of involvement of Fe(IV) and Fe(V) species. Chemical Engineering Journal, 388: 124134

    Article  CAS  Google Scholar 

  • Ma J, Liu W (2002). Effectiveness and mechanism of potassium ferrate (VI) preoxidation for algae removal by coagulation. Water Research, 36(4): 871–878

    Article  CAS  Google Scholar 

  • Ma L, Lam W W, Lo P K, Lau K C, Lau T C (2016). Ca2+-induced oxygen generation by FeO42− at pH 9–10. Angewandte Chemie International Edition in English, 55(9): 3012–3016

    Article  CAS  Google Scholar 

  • Ma Y, Gao N, Li C (2012). Degradation and pathway of tetracycline hydrochloride in aqueous solution by potassium ferrate. Environmental Engineering Science, 29(5): 357–362

    Article  CAS  Google Scholar 

  • Mácová Z, Bouzek K, Hives J, Sharma V K, Terryn R J, Baum J C (2009). Research progress in the electrochemical synthesis of ferrate (VI). Electrochimica Acta, 54(10): 2673–2683

    Article  Google Scholar 

  • Manoli K, Maffettone R, Sharma V K, Santoro D, Ray A K, Passalacqua K D, Carnahan K E, Wobus C E, Sarathy S (2020). Inactivation of murine norovirus and fecal coliforms by ferrate(VI) in secondary effluent wastewater. Environmental Science & Technology, 54(3): 1878–1888

    Article  CAS  Google Scholar 

  • Manoli K, Nakhla G, Feng M, Sharma V K, Ray A K (2017a). Silica gelenhanced oxidation of caffeine by ferrate(VI). Chemical Engineering Journal, 330: 987–994

    Article  CAS  Google Scholar 

  • Manoli K, Nakhla G, Ray A K, Sharma V K (2017b). Enhanced oxidative transformation of organic contaminants by activation of ferrate(VI): Possible involvement of FeV/FeIV species. Chemical Engineering Journal, 307: 513–517

    Article  CAS  Google Scholar 

  • Mártire D O, Caregnato P, Furlong J, Allegretti P, Gonzalez M C (2002). Kinetic study of the reactions of oxoiron(IV) with aromatic substrates in aqueous solutions. International Journal of Chemical Kinetics, 34(8): 488–494

    Article  Google Scholar 

  • Moussavi G, Pourakbar M, Aghayani E, Mahdavianpour M (2018). Investigating the aerated VUV/PS process simultaneously generating hydroxyl and sulfate radicals for the oxidation of cyanide in aqueous solution and industrial wastewater. Chemical Engineering Journal, 350: 673–680

    Article  CAS  Google Scholar 

  • Mura S, Malfatti L, Greppi G, Innocenzi P (2017). Ferrates for water remediation. Reviews in Environmental Science and Biotechnology, 16(1): 15–35

    Article  CAS  Google Scholar 

  • Novak P, Kolar M, Machala L, Siskova K M, Karlicky F, Petr M, Zboril R (2018). Transformations of ferrates(IV,V,VI) in liquids: Mossbauer spectroscopy of frozen solutions. Physical Chemistry Chemical Physics, 20(48): 30247–30256

    Article  CAS  Google Scholar 

  • Pestovsky O, Bakac A (2004). Reactivity of aqueous Fe(IV) in hydride and hydrogen atom transfer reactions. Journal of the American Chemical Society, 126(42): 13757–13764

    Article  CAS  Google Scholar 

  • Pestovsky O, Bakac A (2006). Aqueous ferryl (IV) ion: Kinetics of oxygen atom transfer to substrates and oxo exchange with solvent water. Inorganic Chemistry, 45(2): 814–820

    Article  CAS  Google Scholar 

  • Prucek R, Tucek J, Kolarik J, Huskova I, Filip J, Varma R S, Sharma V K, Zboril R (2015). Ferrate(VI)-prompted removal of metals in aqueous media: Mechanistic delineation of enhanced efficiency via metal entrenchment in magnetic oxides. Environmental Science & Technology, 49(4): 2319–2327

    Article  CAS  Google Scholar 

  • Rai P K, Lee J, Kailasa S K, Kwon E E, Tsang Y F, Ok Y S, Kim K H (2018). A critical review of ferrate(VI)-based remediation of soil and groundwater. Environmental Research, 160: 420–448

    Article  CAS  Google Scholar 

  • Rojas S, Horcajada P (2020). Metal-organic frameworks for the removal of emerging organic contaminants in water. Chemical Reviews, 120(16): 8378–8415

    Article  CAS  Google Scholar 

  • Rush J D, Bielski B H J (1989). Kinetics of ferrate(V) decay in aqueous solution: A pulse-radiolysis study. Inorganic Chemistry, 28(21): 3947–3951

    Article  CAS  Google Scholar 

  • Rush J D, Zhao Z, Bielski B H J (1996). Reaction of ferrate(VI)/ferrate (V) with hydrogen peroxide and superoxide anion: A stopped-flow and premix pulse radiolysis study. Free Radical Research, 24(3): 187–198

    Article  CAS  Google Scholar 

  • Sarma R, Angeles-Boza A M, Brinkley D W, Roth J P (2012). Studies of the di-iron(VI) intermediate in ferrate-dependent oxygen evolution from water. Journal of the American Chemical Society, 134(37): 15371–15386

    Article  CAS  Google Scholar 

  • Schink T, Waite T D (1980). Inactivation of f2 virus with ferrate(VI). Water Research, 14(12): 1705–1717

    Article  CAS  Google Scholar 

  • Schmidbaur H (2018). The history and the current revival of the oxo chemistry of iron in its highest oxidation states FeVI-FeVIII. Journal of Inorganic and General Chemistry, 644: 536–559

    CAS  Google Scholar 

  • Seung-Mok L, Diwakar T (2009). Application of ferrate(VI) in the treatment of industrial wastes containing metal-complexed cyanides: A green treatment. Journal of Environmental Sciences-China, 21(10): 1347–1352

    Article  Google Scholar 

  • Shao B, Dong H, Feng L, Qiao J, Guan X (2020). Influence of [sulfite]/[Fe(VI)] molar ratio on the active oxidants generation in Fe(VI)/sulfite process. Journal of Hazardous Materials, 384: 121303

    Article  CAS  Google Scholar 

  • Shao B, Dong H, Sun B, Guan X (2019). Role of ferrate(IV) and ferrate (V) in activating ferrate(VI) by calcium sulfite for enhanced oxidation of organic contaminants. Environmental Science & Technology, 53(2): 894–902

    Article  CAS  Google Scholar 

  • Sharma V K (2002). Ferrate(V) oxidation of pollutants: a premix pulse radiolysis study. Radiation Physics and Chemistry, 65(4–5): 349–355

    Article  CAS  Google Scholar 

  • Sharma V K (2007). Disinfection performance of Fe(VI) in water and wastewater: A review. Water Science and Technology, 55(1–2): 225–232

    Article  CAS  Google Scholar 

  • Sharma V K (2010). Oxidation of inorganic compounds by ferrate (VI) and ferrate (V): One-electron and two-electron transfer steps. Environmental Science & Technology, 44(13): 5148–5152

    Article  CAS  Google Scholar 

  • Sharma V K (2011). Oxidation of inorganic contaminants by ferrates (VI, V, and IV)-kinetics and mechanisms: A review. Journal of Environmental Management, 92(4): 1051–1073

    Article  CAS  Google Scholar 

  • Sharma V K (2013). Ferrate(VI) and ferrate(V) oxidation of organic compounds: Kinetics and mechanism. Coordination Chemistry Reviews, 257(2): 495–510

    Article  CAS  Google Scholar 

  • Sharma V K, Burnett C R, Millero F J (2001a). Dissociation constants of the monoprotic ferrate(VI) ion in NaCl media. Physical Chemistry Chemical Physics, 3(11): 2059–2062

    Article  CAS  Google Scholar 

  • Sharma V K, Burnett C R, O’connor D B, Cabelli D (2002). Iron(VI) and iron(V) oxidation of thiocyanate. Environmental Science & Technology, 36(19): 4182–4186

    Article  CAS  Google Scholar 

  • Sharma V K, Burnett C R, Rivera W, Joshi V N (2001b). Heterogeneous photocatalytic reduction of ferrate(VI) in UV-irradiated titania suspensions. Langmuir, 17(15): 4598–4601

    Article  CAS  Google Scholar 

  • Sharma V K, Burnett C R, Yngard R A, Cabelli D E (2005). Iron(VI) and iron(V) oxidation of copper(I) cyanide. Environmental Science & Technology, 39(10): 3849–3854

    Article  CAS  Google Scholar 

  • Sharma V K, Cabelli D (2009). Reduction of oxyiron(V) by sulfite and thiosulfate in aqueous solution. Journal of Physical Chemistry A, 113(31): 8901–8906

    Article  CAS  Google Scholar 

  • Sharma V K, Chen L, Zboril R (2016). Review on high valent FeVI (ferrate): A sustainable green oxidant in organic chemistry and transformation of pharmaceuticals. ACS Sustainable Chemistry & Engineering, 4(1): 18–34

    Article  CAS  Google Scholar 

  • Sharma V K, Dutta P K, Ray A K (2007). Review of kinetics of chemical and photocatalytical oxidation of arsenic(III) as influenced by pH. Journal of Environmental Science and Health Part A-Toxic/hazardous Substances & Environmental Engineering, 42(7): 997–1004

    CAS  Google Scholar 

  • Sharma V K, Luther G W, Millero F J (2011). Mechanisms of oxidation of organosulfur compounds by ferrate(VI). Chemosphere, 82(8): 1083–1089

    Article  CAS  Google Scholar 

  • Sharma V K, Mishra S K, Nesnas N (2006a). Oxidation of sulfonamide antimicrobials by ferrate(VI). Environmental Science & Technology, 40(23): 7222–7227 (FeVIO42−)

    Article  CAS  Google Scholar 

  • Sharma V K, Mishra S K, Ray A K (2006b). Kinetic assessment of the potassium ferrate(VI) oxidation of antibacterial drug sulfamethoxazole. Chemosphere, 62(1): 128–134

    Article  CAS  Google Scholar 

  • Sharma V K, Rivera W, Smith J O, O’brien B (1998). Ferrate(VI) oxidation of aqueous cyanide. Environmental Science & Technology, 32(17): 2608–2613

    Article  CAS  Google Scholar 

  • Sharma V K, Smith J O, Millero F J (1997). Ferrate(VI) oxidation of hydrogen sulfide. Environmental Science & Technology, 31(9): 2486–2491

    Article  CAS  Google Scholar 

  • Sharma V K, Zboril R, Varma R S (2015). Ferrates: Greener oxidants with multimodal action in water treatment technologies. Accounts of Chemical Research, 48(2): 182–191

    Article  CAS  Google Scholar 

  • Shin J, von Gunten U, Reckhow D A, Allard S, Lee Y (2018). Reactions of ferrate(VI) with iodide and hypoiodous acid: Kinetics, pathways, and implications for the fate of iodine during water treatment. Environmental Science & Technology, 52(13): 7458–7467

    Article  CAS  Google Scholar 

  • Sun S, Jiang J, Qiu L, Pang S, Li J, Liu C, Wang L, Xue M, Ma J (2019). Activation of ferrate by carbon nanotube for enhanced degradation of bromophenols: Kinetics, products, and involvement of Fe(V)/Fe(IV). Water Research, 156: 1–8

    Article  CAS  Google Scholar 

  • Sun S, Pang S, Jiang J, Ma J, Huang Z, Zhang J, Liu Y, Xu C, Liu Q, Yuan Y (2018). The combination of ferrate(VI) and sulfite as a novel advanced oxidation process for enhanced degradation of organic contaminants. Chemical Engineering Journal, 333: 11–19

    Article  CAS  Google Scholar 

  • Talaiekhozani A, Talaei M R, Rezania S (2017). An overview on production and application of ferrate(VI) for chemical oxidation, coagulation and disinfection of water and wastewater. Journal of Environmental Chemical Engineering, 5(2): 1828–1842

    Article  CAS  Google Scholar 

  • Thompson G W, Ockerman L T, Schreyer J M (1951). Preparation and purification of potassium ferrate(VI). Journal of the American Chemical Society, 73(3): 1379–1381

    Article  CAS  Google Scholar 

  • Tian S Q, Wang L, Liu Y L, Ma J (2020). Degradation of organic pollutants by ferrate/biochar: Enhanced formation of strong intermediate oxidative iron species. Water Research, 183: 116054

    Article  CAS  Google Scholar 

  • Tran N H, Reinhard M, Gin K Y H (2018). Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions: A review. Water Research, 133: 182–207

    Article  CAS  Google Scholar 

  • von Gunten U (2018). Oxidation processes in water treatment: Are we on track? Environmental Science & Technology, 52(9): 5062–5075

    Article  CAS  Google Scholar 

  • Wang H L, Liu S Q, Zhang X Y (2009). Preparation and application of sustained release microcapsules of potassium ferrate(VI) for dinitro butyl phenol (DNBP) wastewater treatment. Journal of Hazardous Materials, 169(1–3): 448–453

    Article  CAS  Google Scholar 

  • Wang X, Liu Y, Huang Z, Wang L, Wang Y, Li Y, Li J, Qi J, Ma J (2018a). Rapid oxidation of iodide and hypoiodous acid with ferrate and no formation of iodoform and monoiodoacetic acid in the ferrate/I−/HA system. Water Research, 144: 592–602

    Article  CAS  Google Scholar 

  • Wang X S, Liu Y L, Xu S Y, Zhang J, Li J, Song H, Zhang Z X, Wang L, Ma J (2020). Ferrate oxidation of phenolic compounds in iodine-containing water: Control of iodinated aromatic products. Environmental Science & Technology, 54(3): 1827–1836

    Article  CAS  Google Scholar 

  • Wang Z, Jiang J, Pang S, Zhou Y, Guan C, Gao Y, Li J, Yang Y, Qiu W, Jiang C (2018b). Is sulfate radical really generated from peroxydisulfate sulfate activated by iron(II) for environmental decontamination? Environmental Science & Technology, 52(19): 11276–11284

    Article  CAS  Google Scholar 

  • Wang Z P, Huang L Z, Feng X N, Xie P C, Liu Z Z (2010). Removal of phosphorus in municipal landfill leachate by photochemical oxidation combined with ferrate pre-treatment. Desalination and Water Treatment, 22(1–3): 111–116

    Article  Google Scholar 

  • Wu S, Liu H, Lin Y, Yang C, Lou W, Sun J, Du C, Zhang D, Nie L, Yin K, Zhong Y (2020). Insights into mechanisms of UV/ferrate oxidation for degradation of phenolic pollutants: Role of superoxide radicals. Chemosphere, 244: 125490

    Article  CAS  Google Scholar 

  • Xie X, Cheng H (2019). A simple treatment method for phenylarsenic compounds: Oxidation by ferrate(VI) and simultaneous removal of the arsenate released with in situ formed Fe(III) oxide-hydroxide. Environment International, 127: 730–741

    Article  CAS  Google Scholar 

  • Xing H, Yuan B, Wang Y, Qu J (2002). Photocatalytic detoxification of microcystins combined with ferrate pretreatment. Journal of Environmental Science and Health Part A-Toxic/hazardous Substances & Environmental Engineering, 37(4): 641–649

    Google Scholar 

  • Yan X, Sun J, Kenjiahan A, Dai X, Ni B J, Yuan Z (2020). Rapid and strong biocidal effect of ferrate on sulfidogenic and methanogenic sewer biofilms. Water Research, 169: 115208

    Article  CAS  Google Scholar 

  • Yang B, Ying G G, Chen Z F, Zhao J L, Peng F Q, Chen X W (2014). Ferrate(VI) oxidation of tetrabromobisphenol A in comparison with bisphenol A. Water Research, 62: 211–219

    Article  CAS  Google Scholar 

  • Yang B, Ying G G, Zhang L J, Zhou L J, Liu S, Fang Y X (2011). Kinetics modeling and reaction mechanism of ferrate(VI) oxidation of benzotriazoles. Water Research, 45(6): 2261–2269

    Article  CAS  Google Scholar 

  • Yang B, Ying G G, Zhao J L, Liu S, Zhou L J, Chen F (2012). Removal of selected endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) during ferrate(VI) treatment of secondary wastewater effluents. Water Research, 46(7): 2194–2204

    Article  CAS  Google Scholar 

  • Yang S, Doong R (2008). Preparation of potassium ferrate for the degradation of tetracycline. In: ACS Symposium Series: American Chemical Society. Washington, DC: ACS Publications, 404–419 (Ferrates)

    Google Scholar 

  • Yang T, Liu Y, Wang L, Jiang J, Huang Z, Pang S Y, Cheng H, Gao D, Ma J (2018a). Highly effective oxidation of roxarsone by ferrate and simultaneous arsenic removal with in situ formed ferric nanoparticles. Water Research, 147: 321–330

    Article  CAS  Google Scholar 

  • Yang T, Wang L, Liu Y, Jiang J, Huang Z, Pang S Y, Cheng H, Gao D, Ma J (2018b). Removal of organoarsenic with ferrate and ferrate resultant nanoparticles: Oxidation and adsorption. Environmental Science & Technology, 52(22): 13325–13335

    Article  CAS  Google Scholar 

  • Yngard R, Damrongsiri S, Osathaphan K, Sharma V K (2007). Ferrate (VI) oxidation of zinc-cyanide complex. Chemosphere, 69(5): 729–735

    Article  CAS  Google Scholar 

  • Yngard R A, Sharma V K, Filip J, Zboril R (2008). Ferrate(VI) oxidation of weak-acid dissociable cyanides. Environmental Science & Technology, 42(8): 3005–3010

    Article  CAS  Google Scholar 

  • Yuan B, Ye M, Lan H (2008b). Preparation and properties of encapsulated potassium ferrate for oxidative remediation of trichloroethylene contaminated groundwater. In: ACS Symposium Series: American Chemical Society. Washington, DC: ACS Publications, 378–388 (Ferrates)

    Google Scholar 

  • Yuan B L, Li X Z, Graham N (2008a). Aqueous oxidation of dimethyl phthalate in a Fe(VI)-TiO2-UV reaction system. Water Research, 42(6–7): 1413–1420

    Article  CAS  Google Scholar 

  • Zhang J, Zhu L, Shi Z, Gao Y (2017). Rapid removal of organic pollutants by activation sulfite with ferrate. Chemosphere, 186: 576–579

    Article  CAS  Google Scholar 

  • Zhang M S, Xu B, Wang Z, Zhang T Y, Gao N Y (2016). Formation of iodinated trihalomethanes after ferrate pre-oxidation during chlorination and chloramination of iodide-containing water. Journal of the Taiwan Institute of Chemical Engineers, 60: 453–459

    Article  CAS  Google Scholar 

  • Zhu J, Yu F, Meng J, Shao B, Dong H, Chu W, Cao T, Wei G, Wang H, Guan X (2020). Overlooked role of Fe(IV) and Fe(V) during organic contaminants oxidation by Fe(VI). Environmental Science & Technology, 54(15): 9702–9710

    Article  CAS  Google Scholar 

  • Zimmermann S G, Schmukat A, Schulz M, Benner J, Gunten U, Ternes T A (2012). Kinetic and mechanistic investigations of the oxidation of tramadol by ferrate and ozone. Environmental Science & Technology, 46(2): 876–884

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21976133) and the National Key Research and Development Program of China (No. 2019YFC1805202).

Author information

Authors and Affiliations

  1. State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China

    Shuchang Wang, Binbin Shao, Junlian Qiao & Xiaohong Guan

  2. Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China

    Shuchang Wang, Binbin Shao, Junlian Qiao & Xiaohong Guan

  3. International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, China

    Junlian Qiao & Xiaohong Guan

Authors
  1. Shuchang Wang
    View author publications

    Search author on:PubMed Google Scholar

  2. Binbin Shao
    View author publications

    Search author on:PubMed Google Scholar

  3. Junlian Qiao
    View author publications

    Search author on:PubMed Google Scholar

  4. Xiaohong Guan
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Xiaohong Guan.

Additional information

Highlights

• The properties of Fe(VI) were summarized.

• Both the superiorities and the limitations of Fe (VI) technologies were discussed.

• Methods to improve contaminants oxidation/disinfection by Fe(VI) were introduced.

• Future research needs for the development of Fe (VI) technologies were proposed.

Special column—Young Talents

Dr Xiaohong Guan is a professor of Municipal Engineering at Tongji University, China. She obtained her Ph.D. from Hong Kong University of Science and Technology in Environmental Engineering, China. Prof. Guan also holds B.S. and M.S. degrees from Tongji University in Environmental Engineering. Research and educational activities in her Lab at Tongji University are focused on novel physical and chemical processes for water pollution control, with an emphasis on developing technologies for heavy metals and emerging organic contaminants removal. She is a recipient of the 2015 NSFC Outstanding Youth Foundation and the Second prize of Natural Sciences of Ministry of Education of China. She had been invited to talk at Gordon Conference because of the originality of her research. Now she serves as the associate editors of Water Research and Journal of Hazardous Materials.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Shao, B., Qiao, J. et al. Application of Fe(VI) in abating contaminants in water: State of art and knowledge gaps. Front. Environ. Sci. Eng. 15, 80 (2021). https://doi.org/10.1007/s11783-020-1373-3

Download citation

  • Received: 25 August 2020

  • Revised: 04 October 2020

  • Accepted: 04 October 2020

  • Published: 04 November 2020

  • DOI: https://doi.org/10.1007/s11783-020-1373-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Ferrate
  • Oxidation
  • Disinfection
  • Coagulation
  • Enhancement
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Associated Content

Part of a collection:

Special Column—Young Talents

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

152.53.39.118

Not affiliated

Springer Nature

© 2025 Springer Nature