Skip to main content

Understanding building-occupant-microbiome interactions toward healthy built environments: A review

Abstract

Built environments, occupants, and microbiomes constitute a system of ecosystems with extensive interactions that impact one another. Understanding the interactions between these systems is essential to develop strategies for effective management of the built environment and its inhabitants to enhance public health and well-being. Numerous studies have been conducted to characterize the microbiomes of the built environment. This review summarizes current progress in understanding the interactions between attributes of built environments and occupant behaviors that shape the structure and dynamics of indoor microbial communities. In addition, this review also discusses the challenges and future research needs in the field of microbiomes of the built environment that necessitate research beyond the basic characterization of microbiomes in order to gain an understanding of the causal mechanisms between the built environment, occupants, and microbiomes, which will provide a knowledge base for the development of transformative intervention strategies toward healthy built environments. The pressing need to control the transmission of SARS-CoV-2 in indoor environments highlights the urgency and significance of understanding the complex interactions between the built environment, occupants, and microbiomes, which is the focus of this review.

References

  1. Abrishami S H, Tall B D, Bruursema T J, Epstein P S, Shah D B (1994). Bacterial adherence and viability on cutting board surfaces. Journal of Food Safety, 14(2): 153–172

    Google Scholar 

  2. Adams R I, Bateman A C, Bik H M, Meadow J F (2015a). Microbiota of the indoor environment: A meta-analysis. Microbiome, 3: 49

    Google Scholar 

  3. Adams R I, Bhangar S, Dannemiller K C, Eisen J A, Fierer N, Gilbert J A, Green J L, Marr L C, Miller S L, Siegel J A, Stephens B, Waring M S, Bibby K (2016). Ten questions concerning the microbiomes of buildings. Building and Environment, 109: 224–234

    Google Scholar 

  4. Adams R I, Bhangar S, Pasut W, Arens E A, Taylor J W, Lindow S E, Nazaroff W W, Bruns T D (2015b). Chamber bioaerosol study: outdoor air and human occupants as sources of indoor airborne microbes. PLoS One, 10(5): eO 128022

    Google Scholar 

  5. Adams R I, Lymperopoulou D L (2018). Lessons learned when looking for non-neutral ecological processes in the built environment: the bacterial and fungal microbiota of shower tiles. bioRxiv: 413773

    Google Scholar 

  6. Adams R I, Miletto M, Lindow S E, Taylor J W, Bruns T D (2014). Airborne bacterial communities in residences: similarities and differences with fungi. PLoS One, 9(3):e91283

    Google Scholar 

  7. Adams R I, Miletto M, Taylor J W, Bruns T D (2013). Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. ISME Journal, 7(7): 1262–1273

    CAS  Google Scholar 

  8. Afshinnekoo E, Meydan C, Chowdhury S, Jaroudi D, Boyer C, Bernstein N, Maritz J M, Reeves D, Gandara J, Chhangawala S, Ahsanuddin S, Simmons A, Nessel T, Sundaresh B, Pereira E, Jorgensen E, Kolokotronis S O, Kirchberger N, Garcia I, Gandara D, Dhanraj S, Nawrin T, Saletore Y, Alexander N, Vijay P, Henaff E M, Zumbo P, Walsh M, O’ mullan G D, Tighe S, Dudley J T, Dunaif A, Ennis S, O’ halloran E, Magalhaes T R, Boone B, Jones A L, Muth T R, Paolantonio K S, Alter E, Schadt E E, Garbarino J, Prill R J, Carlton J M, Levy S, Mason C E (2015). Geospatial resolution of human and bacterial diversity with city-scale metagenomics. Cell Systems, 1(1): 72–87

    CAS  Google Scholar 

  9. Aiello A E, Larson E (2003). Antibacterial cleaning and hygiene products as an emerging risk factor for antibiotic resistance in the community. Lancet. Infectious Diseases, 3(8): 501–506

    Google Scholar 

  10. Ak N O, Cliver D O, Kaspar C W (1994). Decontamination of plastic and wooden cutting boards for kitchen use. Journal of Food Protection, 57(1): 23–30

    Google Scholar 

  11. Allen J G, Marr L C (2020). Recognizing and controlling airborne transmission of SARS-CoV-2 in indoor environments. Indoor Air, 30(4): 557–558

    CAS  Google Scholar 

  12. Andersen B, Frisvad J C, Søndergaard I, Rasmussen I S, Larsen L S (2011). Associations between fungal species and water-damaged building materials. Applied and Environmental Microbiology, 77(12): 4180–4188

    CAS  Google Scholar 

  13. Anderson D J, Chen L F, Weber D J, Moehring R W, Lewis S S, Triplett P F, Blocker M, Becherer P, Schwab J C, Knelson L P, Lokhnygina Y, Rutala W A, Kanamori H, Gergen M F, Sexton D J (2017). Enhanced terminal room disinfection and acquisition and infection caused by multidrug-resistant organisms and Clostridium difficile (the Benefits of Enhanced Terminal Room Disinfection study): a cluster-randomised, multicentre, crossover study. Lancet, 389(10071): 805–814

    Google Scholar 

  14. Andersson M A, Nikulin M, Koljalg U, Andersson M C, Rainey F, Reijula K, Hintikka E L, Salkinoja-Salonen M (1997). Bacteria, molds, and toxins in water-damaged building materials. Applied and Environmental Microbiology, 63(2): 387–393

    CAS  Google Scholar 

  15. Andrews J R, Morrow C, Walensky R P, Wood R (2014). Integrating social contact and environmental data in evaluating tuberculosis transmission in a South African township. Journal of Infectious Diseases, 210(4): 597–603

    CAS  Google Scholar 

  16. Arvand M, Jungkind K, Hack A (2011). Contamination of the cold water distribution system of health care facilities by Legionella pneumophila: do we know the true dimension? Eurosurveillance, 16(16): 19844

    Google Scholar 

  17. ASHRAE (2019). ASHRAE Handbook - HVAC Applications.

    Google Scholar 

  18. Ayerst G (1969). The effects of moisture and temperature on growth and spore germination in some fungi. Journal of Stored Products Research, 5(2): 127–141

    Google Scholar 

  19. Barberan A, Dunn R R, Reich B J, Pacifici K, Laber E B, Menninger H L, Morton J M, Henley J B, Leff J W, Miller S L, Fierer N (2015). The ecology of microscopic life in household dust. Proceedings of the Royal Society B: Biological Sciences, 282(1814): 20151139

    Google Scholar 

  20. Bazzoni C B (1914). The Destruction of bacteria through the action of light. American Journal of Public Health, 4(11): 975–992

    CAS  Google Scholar 

  21. Beans C (2016). The Microbiome of green design: sustainable building practices may have unforeseen consequences for microbial communities and human health. Bioscience, 66(10): 801–806

    Google Scholar 

  22. Besaratinia A, Yoon J I, Schroeder C, Bradforth S E, Cockburn M, Pfeifer G P (2011). Wavelength dependence of ultraviolet radiation-induced DNA damage as determined by laser irradiation suggests that cyclobutane pyrimidine dimers are the principal DNA lesions produced by terrestrial sunlight. FASEB Journal, 25(9): 3079–3091

    CAS  Google Scholar 

  23. Bokulich N A, Lewis Z T, Boundy-Mills K, Mills D A (2016). A new perspective on microbial landscapes within food production. Current Opinion in Biotechnology, 37: 182–189

    CAS  Google Scholar 

  24. Bonetta S, Bonetta S, Ferretti E, Balocco F, Carraro E (2010). Evaluation of Legionella pneumophila contamination in Italian hotel water systems by quantitative real-time PCR and culture methods. Journal of Applied Microbiology, 108(5): 1576–1583

    Google Scholar 

  25. Borella P, Montagna M T, Romano-Spica V, Stampi S, Stancanelli G, Triassi M, Neglia R, Marchesi I, Fantuzzi G, Tato D, Napoli C, Quaranta G, Laurenti P, Leoni E, De Luca G, Ossi C, Moro M, D’alcala G R (2004). Legionella infection risk from domestic hot water. Emerging Infectious Diseases, 10(3): 457–464

    Google Scholar 

  26. Borella P, Montagna M T, Stampi S, Stancanelli G, Romano-Spica V, Triassi M, Marchesi I, Bargellini A, Tato D, Napoli C, Zanetti F, Leoni E, Moro M, Scaltriti S, Ribera D’ alcala G, Santarpia R, Boccia S (2005). Legionella contamination in hot water of Italian hotels. Applied and Environmental Microbiology, 71(10): 5805–5813

    CAS  Google Scholar 

  27. Bragoszewska E, Biedron I, Kozielska B, Pastuszka J S (2018). Microbiological indoor air quality in an office building in Gliwice, Poland: analysis of the case study. Air Quality, Atmosphere & Health, 11(6): 729–740

    CAS  Google Scholar 

  28. Bramley A M, Dasgupta S, Skarbinski J, Kamimoto L, Fry A M, Finelli L, Jain S (2012). nit patients with 2009 pandemic influenza A (HlNlpdm09) virus infection- United States, 2009. Influenza and Other Respiratory Viruses, 6(6):e134-e142

    Google Scholar 

  29. Brickner P W, Vincent R L, First M, Nardell E, Murray M, Kaufman W (2003). The application of ultraviolet germicidal irradiation to control transmission of airborne disease: bioterrorism countermeasure. Public Health Reports, 118(2): 99–114

    Google Scholar 

  30. Brooks B, Olm M R, Firek B A, Baker R, Thomas B C, Morowitz M J, Banfield J F (2017). Strain-resolved analysis of hospital rooms and infants reveals overlap between the human and room microbiome. Nature Communications, 8: 1814

    Google Scholar 

  31. Brown G Z, Kline J, Mhuireach G, Northcutt D, Stenson J (2016). Making microbiology of the built environment relevant to design. Microbiome, 4: 6

    CAS  Google Scholar 

  32. Brown-Elliott B A, Wallace R J, Tichindelean C, Sarria J C, Mcnulty S, Vasireddy R, Bridge L, Mayhall C G, Turenne C, Loeffelholz M (2011). Five-year outbreak of community- and hospital-acquired Mycobacterium porcinum infections related to public water supplies. Journal of Clinical Microbiology, 49(12): 4231–4238

    CAS  Google Scholar 

  33. Bultman S J (2014). Emerging roles of the microbiome in cancer. Carcinogenesis, 35(2): 249–255

    CAS  Google Scholar 

  34. Buse H Y, Lu J, Struewing I T, Ashbolt N J (2014). Preferential colonization and release of Legionella pneumophila from mature drinking water biofilms grown on copper versus unplasticized polyvinylchloride coupons. International Journal of Hygiene and Environmental Health, 217(2–3): 219–225

    CAS  Google Scholar 

  35. Carlton E J, Barton K, Shrestha P M, Humphrey J, Newman L S, Adgate J L, Root E, Miller S (2019). Relationships between home ventilation rates and respiratory health in the Colorado Home Energy Efficiency and Respiratory Health (CHEER) study. Environmental Research, 169: 297–307

    CAS  Google Scholar 

  36. Chartier Y, Pessoa-Silva C (2009). Natural ventilation for infection control in health-care settings. World Health Organization

    Google Scholar 

  37. Checinska A, Probst A J, Vaishampayan P, White J R, Kumar D, Stepanov V G, Fox G E, Nilsson H R, Pierson D L, Perry J, Venkateswaran K (2015). Microbiomes of the dust particles collected from the International Space Station and Spacecraft Assembly Facilities. Microbiome, 3: 50

    Google Scholar 

  38. Chen Y C, Yu K P, Shao W C, Tseng C H, Pan W C (2018). Novel mold-resistant building materials impregnated with thermally reduced nano-silver. Indoor Air, 28(2): 276–286

    CAS  Google Scholar 

  39. Couret D G, Diaz P D R, de la Rosa D F A (2013). Influence of architectural design on indoor environment in apartment buildings in Havana. Renewable Energy, 50: 800–811

    Google Scholar 

  40. Coutinho M L, Miller A Z, Macedo M F (2015). Biological colonization and biodeterioration of architectural ceramic materials: An overview. Journal of Cultural Heritage, 16(5): 759–777

    Google Scholar 

  41. Curtis L T (2008). Prevention of hospital-acquired infections: review of non-pharmacological interventions. Journal of Hospital Infection, 69(3): 204–219

    CAS  Google Scholar 

  42. Cutler N, Viles H (2010). Eukaryotic microorganisms and stone biodeterioration. Geomicrobiology Journal, 27(6–7): 630–646

    Google Scholar 

  43. da Silva G D, Guidelli E J, De Queiroz-Fernandes G M, Chaves M R M, Baffa O, Kinoshita A (2019). Silver nanoparticles in building materials for environment protection against microorganisms. International Journal of Environmental Science and Technology, 16(3): 1239–1248

    Google Scholar 

  44. Dade-Robertson M, Keren-Paz A, Zhang M, Kolodkin-Gal I (2017). Architects of nature: growing buildings with bacterial biofilms. Microbial Biotechnology, 10(5): 1157–1163

    CAS  Google Scholar 

  45. Dai D, Prussin A J II, Marr L C, Vikesland P J, Edwards M A, Pruden A (2017). Factors shaping the human exposome in the built environment: opportunities for engineering control. Environmental Science & Technology, 51(14): 7759–7774

    CAS  Google Scholar 

  46. Dai T, Vrahas M S, Murray C K, Hamblin M R (2012). Ultraviolet C irradiation: an alternative antimicrobial approach to localized infections? Expert Review of Anti-Infective Therapy, 10(2): 185–195

    CAS  Google Scholar 

  47. Dannemiller K C (2019). Moving towards a robust definition for a “healthy” indoor microbiome. mSystems, 4(3):e00074-e19

    Google Scholar 

  48. Dannemiller K C, Gent J F, Leaderer B P, Peccia J (2016). Influence of housing characteristics on bacterial and fungal communities in homes of asthmatic children. Indoor Air, 26(2): 179–192

    CAS  Google Scholar 

  49. Dannemiller K C, Weschler C J, Peccia J (2017). Fungal and bacterial growth in floor dust at elevated relative humidity levels. Indoor Air, 27(2): 354–363

    CAS  Google Scholar 

  50. Dedesko S, Siegel J A (2015). Moisture parameters and fungal communities associated with gypsum drywall in buildings. Microbiome, 3:71

    Google Scholar 

  51. Deng Y, Yao J, Wang X, Guo H, Duan D (2012). Transcriptome sequencing and comparative analysis of Saccharina japonica (Laminariales, Phaeophyceae) under blue light induction. PLoS One, 7(6):e39704

    CAS  Google Scholar 

  52. Doll S C (2002). Determination of limiting conditions for fungal growth in the built environment: Harvard School of Public Health, Department of Environmental Health Downing A M W, Blunt T P (1878). III. Researches on the effect of light upon bacteria and other organisms. Proceedings of the Royal Society of London, 26(179–184): 488–500

    Google Scholar 

  53. Dunn R R, Fierer N, Henley J B, Leff J W, Menninger H L (2013). Home life: factors structuring the bacterial diversity found within and between homes. PLoS One, 8(5):e64133

    Google Scholar 

  54. Ege M J, Mayer M, Normand A C, Genuneit J, Cookson WOCM, Braun-Fahrlander C, Heederik D, Piarroux R, Von Mutius E (2011). Exposure to environmental microorganisms and childhood asthma. New England Journal of Medicine, 364(8): 701–709

    CAS  Google Scholar 

  55. Fahimipour A K, Hartmann E M, Siemens A, Kline J, Levin D A, Wilson H, Betancourt-Roman C M, Brown G Z, Fretz M, Northcutt D, Siemens K N, Huttenhower C, Green J L, Van Den Wymelenberg K (2018). Daylight exposure modulates bacterial communities associated with household dust. Microbiome, 6: 175

    Google Scholar 

  56. Falkinham J O (2010). Hospital water filters as a source of Mycobacterium avium complex. Journal of Medical Microbiology, 59(10): 1198–1202

    Google Scholar 

  57. Falkinham J O III, Iseman M D, DeHaas P, Van Soolingen D (2008). Mycobacterium avium in a shower linked to pulmonary disease. Journal of Water and Health, 6(2): 209–213

    Google Scholar 

  58. Feazel L M, Baumgartner L K, Peterson K L, Frank D N, Harris J K, Pace N R (2009). Opportunistic pathogens enriched in showerhead biofilms. Proceedings of the National Academy of Sciences of the United States of America, 106(38): 16393–16399

    CAS  Google Scholar 

  59. Fitzpatrick M C, Bauch C T, Townsend J P, Galvani A P (2019). Modelling microbial infection to address global health challenges. Nature Microbiology, 4(10): 1612–1619

    CAS  Google Scholar 

  60. Flores G E, Bates S T, Caporaso J G, Lauber C L, Leff J W, Knight R, Fierer N (2013). Diversity, distribution and sources of bacteria in residential kitchens. Environmental Microbiology, 15(2): 588–596

    CAS  Google Scholar 

  61. Flores G E, Bates S T, Knights D, Lauber C L, Stombaugh J, Knight R, Fierer N (2011). Microbial biogeography of public restroom surfaces. PLoS One, 6(11):e28132

    CAS  Google Scholar 

  62. Fonseca M J, Tavares F (2011). The Bactericidal effect of sunlight. American Biology Teacher, 73(9): 548–552

    Google Scholar 

  63. Frankel M, Beko G, Timm M, Gustavsen S, Hansen E W, Madsen A M (2012). Seasonal variations of indoor microbial exposures and their relation to temperature, relative humidity, and air exchange rate. Applied and Environmental Microbiology, 78(23): 8289–8297

    CAS  Google Scholar 

  64. Frankel M, Hansen E W, Madsen A M (2014). Effect of relative humidity on the aerosolization and total inflammatory potential of fungal particles from dust-inoculated gypsum boards. Indoor Air, 24(1): 16–28

    CAS  Google Scholar 

  65. Fujimura K E, Johnson C C, Ownby D R, Cox M J, Brodie E L, Havstad S L, Zoratti E M, Woodcraft K J, Bobbitt K R, Wegienka G, Boushey H A, Lynch S V (2010). Man’s best friend? The effect of pet ownership on house dust microbial communities. Journal of Allergy and Clinical Immunology, 126(2): 410–412.e3

    Google Scholar 

  66. Gibbons S M, Schwartz T, Fouquier J, Mitchell M, Sangwan N, Gilbert J A, Kelley S T (2015). Ecological succession and viability of human-associated microbiota on restroom surfaces. Applied and Environmental Microbiology, 81(2): 765–773

    Google Scholar 

  67. Gilbert J A, Stephens B (2018). Microbiology of the built environment. Nature Reviews. Microbiology, 16(11): 661–670

    CAS  Google Scholar 

  68. Goldman R P, Travisano M (2011). Experimental evolution of ultraviolet radiation resistance in Escherichia coli. Evolution; International Journal of Organic Evolution, 65(12): 3486–3498

    Google Scholar 

  69. Grant C, Hunter C A, Flannigan B, Bravery A F (1989). The moisture requirements of moulds isolated from domestic dwellings. International Biodeterioration & Biodegradation, 25(4): 259–284

    Google Scholar 

  70. Green J L (2014). Can bioinformed design promote healthy indoor ecosystems? Indoor Air, 24(2): 113–115

    Google Scholar 

  71. Guerra F L, Lopes W, Cazarolli J C, Lobato M, Masuero A B, Dal Molin D C C, Bento F M, Schrank A, Vainstein M H (2019). Biodeterioration of mortar coating in historical buildings: microclimatic characterization, material, and fungal community. Building and Environment, 155: 195–209

    Google Scholar 

  72. Gutarowska B (2010). Metabolic activity of moulds as a factor of building materials biodegradation. Polish Journal of Microbiology, 59(2): 119–124

    CAS  Google Scholar 

  73. Hanninen O O (2011). Fundamentals of mold growth in indoor environments and strategies for healthy living: Springer, 277–302

    Google Scholar 

  74. Hartmann B, Benson M, Junger A, Quinzio L, Rohrig R, Fengler B, Farber U W, Wille B, Hempelmann G (2004). Computer keyboard and mouse as a reservoir of pathogens in an intensive care unit. Journal of Clinical Monitoring and Computing, 18(1): 7–12

    Google Scholar 

  75. Hathway E A, Noakes C J, Sleigh P A, Fletcher L A (2011). CFD simulation of airborne pathogen transport due to human activities. Building and Environment, 46(12): 2500–2511

    CAS  Google Scholar 

  76. Hegarty B, Dannemiller K C, Peccia J (2018). Gene expression of indoor fungal communities under damp building conditions: implications for human health. Indoor Air, 28(4): 548–558

    CAS  Google Scholar 

  77. Hessling M, Spellerberg B, Hoenes K (2017). Photoinactivation of bacteria by endogenous photosensitizers and exposure to visible light of different wavelengths- a review on existing data. FEMS Microbiology Letters, 364(2):fnw270

    Google Scholar 

  78. Heydenreich B, Bellinghausen I, Konig B, Becker W M, Grabbe S, Petersen A, Saloga J (2012). Gram-positive bacteria on grass pollen exhibit adjuvant activity inducing inflammatory T cell responses. Clinical and Experimental Allergy, 42(1): 76–84

    CAS  Google Scholar 

  79. Hoang C P, Kinney K A, Corsi R L, Szaniszlo P J (2010). Resistance of green building materials to fungal growth. International Biodeterioration & Biodegradation, 64(2): 104–113

    CAS  Google Scholar 

  80. Hobday R A, Dancer S J (2013). Roles of sunlight and natural ventilation for controlling infection: historical and current perspectives. Journal of Hospital Infection, 84(4): 271–282

    CAS  Google Scholar 

  81. Hoeksma P, Aarnink A, Ogink N (2015). Effect of temperature and relative humidity on the survival of airborne bacteria. Wageningen: Wageningen UR Livestock Research

    Google Scholar 

  82. Hoisington A J, Brenner L A, Kinney K A, Postolache T T, Lowry C A (2015). The microbiome of the built environment and mental health. Microbiome, 3: 60

    Google Scholar 

  83. Hospodsky D, Qian J, Nazaroff W W, Yamamoto N, Bibby K, Rismani-Yazdi H, Peccia J (2012). Human occupancy as a source of indoor airborne bacteria. PLoS One, 7(4):e34867

    CAS  Google Scholar 

  84. Hospodsky D, Yamamoto N, Nazaroff W W, Miller D, Gorthala S, Peccia J (2015). Characterizing airborne fungal and bacterial concentrations and emission rates in six occupied children’s classrooms. Indoor Air, 25(6): 641–652

    CAS  Google Scholar 

  85. Hsiao E Y, Mcbride S W, Hsien S, Sharon G, Hyde E R, McCue T, Codelli J A, Chow J, Reisman S E, Petrosino J F, Patterson P H, Mazmanian S K (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 155(7): 1451–1463

    CAS  Google Scholar 

  86. Hu J, BenMaamar S, Glawe A J, Gottel N, Gilbert J A, Hartmann E M (2019). Impacts of indoor surface finishes on bacterial viability. Indoor Air, 29(4): 551–562

    Google Scholar 

  87. Hyvarinen A, Meklin T, Vepsalainen A, Nevalainen A (2002). Fungi and actinobacteria in moisture-damaged building materials—concentrations and diversity. International Biodeterioration & Biodegradation, 49(1): 27–37

    Google Scholar 

  88. Hyytiainen H K, Jayaprakash B, Kirjavainen P V, Saari S E, Holopainen R, Keskinen J, Hameri K, Hyvarinen A, Boor B E, Taubel M (2018). Crawling-induced floor dust resuspension affects the microbiota of the infant breathing zone. Microbiome, 6: 25

    Google Scholar 

  89. Jeon Y S, Chun J, Kim B S (2013). Identification of household bacterial community and analysis of species shared with human microbiome. Current Microbiology, 67(5): 557–563

    CAS  Google Scholar 

  90. Jump R L P, Pultz M J, Donskey C J (2007). Vegetative Clostridium difficile survives in room air on moist surfaces and in gastric contents with reduced acidity: a potential mechanism to explain the association between proton pump inhibitors and C. difficile-associated diarrhea? Antimicrobial Agents and Chemotherapy}, 51(8): 2883–2887

    CAS  Google Scholar 

  91. Jurado V, Miller A Z, Cuezva S, Fernandez-Cortes A, Benavente D, Rogerio-Candelera M A, Reyes J, Canaveras J C, Sanchez-Moral S, Saiz-Jimenez C (2014). Recolonization of mortars by endolithic organisms on the walls of San Roque church in Campeche (Mexico): a case of tertiary bioreceptivity. Construction & Building Materials, 53:348–359

    Google Scholar 

  92. Kang K, Ni Y, Li J, Imamovic L, Sarkar C, Kobler M D, Heshiki Y, Zheng T, Kumari S, Wong J C Y, Archna A, Wong C W M, Dingle C, Denizen S, Baker D M, Sommer M O A, Webster C J, Panagiotou G (2018). The environmental exposures and inner-and intercity traffic flows of the metro system may contribute to the skin microbiome and resistome. Cell Reports, 24(5): 1190–1202.e5

    CAS  Google Scholar 

  93. Karkman A, Lehtimaki J, Ruokolainen L (2017). The ecology of human microbiota: dynamics and diversity in health and disease. Annals of the New York Academy of Sciences, 1399(1): 78–92

    Google Scholar 

  94. Kembel S W, Jones E, Kline J, Northcutt D, Stenson J, Womack A M, Bohannan B J M, Brown G Z, Green J L (2012). Architectural design influences the diversity and structure of the built environment microbiome. ISME Journal, 6(8): 1469–1479

    CAS  Google Scholar 

  95. Kembel S W, Meadow J F, O’connor T K, Mhuireach G, Northcutt D, Kline J, Moriyama M, Brown G Z, Bohannan B J M, Green J L (2014). Architectural design drives the biogeography of indoor bacterial communities. PLoS One, 9(1):e87093

    Google Scholar 

  96. Kettleson E M, Adhikari A, Vesper S, Coombs K, Indugula R, Reponen T (2015). Key determinants of the fungal and bacterial microbiomes in homes. Environmental Research, 138: 130–135

    CAS  Google Scholar 

  97. Kirjavainen P V, Karvonen A M, Adams R I, Taubel M, Roponen M, Tuoresmaki P, Loss G, Jayaprakash B, Depner M, Ege M J, Renz H, Pfefferle P I, Schaub B, Lauener R, Hyvarinen A, Knight R, Heederik D J J, Von Mutius E, Pekkanen J (2019). Farm-like indoor microbiota in non-farm homes protects children from asthma development. Nature Medicine, 25(7): 1089–1095

    CAS  Google Scholar 

  98. Klepeis N E, Nelson W C, Ott W R, Robinson J P, Tsang A M, Switzer P, Behar J V, Hern S C, Engelmann W H (2001). The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. Journal of Exposure Science & Environmental Epidemiology, 11(3): 231–252

    CAS  Google Scholar 

  99. Kline S, Cameron S, Streifel A, Yakrus M A, Karris F, Peacock K, Besser J, Cooksey R C (2004). An outbreak of bacteremias associated with Mycobacterium mucogenicum in a hospital water supply. Infection Control and Hospital Epidemiology, 25(12): 1042–1049

    Google Scholar 

  100. Kotay S, Chai W, Guilford W, Barry K, Mathers A J (2017). Spread from the sink to the patient: in situ study using green fluorescent protein (GFP)-expressing Escherichia coli to model bacterial dispersion from hand-washing sink-trap reservoirs. Applied and Environmental Microbiology, 83(8):e03327-16

    CAS  Google Scholar 

  101. Kovesi T, Zaloum C, Stocco C, Fugler D, Dales R E, Ni A, Barrowman N, Gilbert N L, Miller J D (2009). Heat recovery ventilators prevent respiratory disorders in Inuit children. Indoor Air, 19(6): 489–499

    CAS  Google Scholar 

  102. Kundsin R B (1988). Architectural design and indoor microbial pollution. Oxford University Press, USA

    Google Scholar 

  103. Laborel-Preneron A, Ouedraogo K, Simons A, Labat M, Bertron A, Magniont C, Roques C, Roux C, Aubert J E (2018). Laboratory test to assess sensitivity of bio-based earth materials to fungal growth. Building and Environment, 142: 11–21

    Google Scholar 

  104. Lau C S, Chamberlain R S (2016). Probiotics are effective at preventing Clostridium difficile-associated diarrhea: a systematic review and meta-analysis. International Journal of General Medicine, 9: 27–37

    Google Scholar 

  105. Lax S, Cardona C, Zhao D, Winton V J, Goodney G, Gao P, Gottel N, Hartmann E M, Henry C, Thomas P M, Kelley S T, Stephens B, Gilbert J A (2019). Microbial and metabolic succession on common building materials under high humidity conditions. Nature Communications, 10: 1767

    Google Scholar 

  106. Lax S, Smith D P, Hampton-Marcell J, Owens S M, Handley K M, Scott N M, Gibbons S M, Larsen P, Shogan B D, Weiss S, Metcalf J L, Ursell L K, Vazquez-Baeza Y, Van Treuren W, Hasan N A, Gibson M K, Colwell R, Dantas G, Knight R, Gilbert J A (2014). Longitudinal analysis of microbial interaction between humans and the indoor environment. Science, 345(6200): 1048–1052

    CAS  Google Scholar 

  107. Lee P C, Su H N (2010). Investigating the structure of regional innovation system research through keyword co-occurrence and social network analysis. Innovation-Management, Policy & Practice, 12(1): 26–40

    Google Scholar 

  108. Leung M H Y, Lee P K H (2016). The roles of the outdoors and occupants in contributing to a potential pan-microbiome of the built environment: a review. Microbiome, 4: 21

    Google Scholar 

  109. Leung M H Y, Wilkins D, Li E K T, Kong F K F, Lee P K H (2014). Indoor-air microbiome in an urban subway network: diversity and dynamics. Applied and Environmental Microbiology, 80(21): 6760–6770

    Google Scholar 

  110. Levin J, Riley L S, Parrish C, English D, Ahn S (2013). The effect of portable pulsed xenon ultraviolet light after terminal cleaning on hospital-associated Clostridium difficile infection in a community hospital. American Journal of Infection Control, 41(8): 746–748

    Google Scholar 

  111. Lindsley W G, Blachere F M, Thewlis R E, Vishnu A, Davis K A, Cao G, Palmer J E, Clark K E, Fisher M A, Khakoo R, Beezhold D H (2010). Measurements of airborne influenza virus in aerosol particles from human coughs. PLoS One, 5(11):e15100

    CAS  Google Scholar 

  112. Lins de Sousa D, AraujoLima R, Zanin I C, Klein M I, Janal M N, Duarte S (2015). Effect of twice-daily blue light treatment on matrix-rich biofilm development. PLoS One, 10(7):e0131941

    Google Scholar 

  113. Liu G, Tang C M, Exley R M (2015). Non-pathogenic Neisseria: members of an abundant, multi-habitat, diverse genus. Microbiology-SGM, 161(7): 1297–1312

    CAS  Google Scholar 

  114. Lloyd-Price J, Abu-Ali G, Huttenhower C (2016). The healthy human microbiome. Genome Medicine, 8: 51

    Google Scholar 

  115. Lopez G U, Gerba C P, Tamimi A H, Kitajima M, Maxwell S L, Rose J B (2013). Transfer efficiency of bacteria and viruses from porous and nonporous fomites to fingers under different relative humidity conditions. Applied and Environmental Microbiology, 79(18): 5728–5734

    CAS  Google Scholar 

  116. Lowry C A, Smith D G, Siebler P H, Schmidt D, Stamper C E, Hassell J E Jr, Yamashita P S, Fox J H, Reber S O, Brenner L A, Hoisington A J, Postolache T T, Kinney K A, Marciani D, Hernandez M, Hemmings S M J, Malan-Muller S, Wright K P, Knight R, Raison C L, Rook G A W (2016). The Microbiota, immunoregulation, and mental Health: Implications for public health. Current Environmental Health Reports, 3(3): 270–286

    CAS  Google Scholar 

  117. Lugauskas A, Levinskaite L, Peciulyte D (2003). Micromycetes as deterioration agents of polymeric materials. International Biodeter-ioration & Biodegradation, 52(4): 233–242

    CAS  Google Scholar 

  118. Luongo J C, Barberan A, Hacker-Cary R, Morgan E E, Miller S L, Fierer N (2017). Microbial analyses of airborne dust collected from dormitory rooms predict the sex of occupants. Indoor Air, 27(2): 338–344

    CAS  Google Scholar 

  119. Maclean M, Anderson J G, Macgregor S J, White T, Atreya C D (2016). A new proof of concept in bacterial reduction: antimicrobial action of violet-blue light (405 nm) in ex vivo stored plasma. Journal of Blood Transfusion, 2016: 1–11

    Google Scholar 

  120. Madhav N, Oppenheim B, Gallivan M, Mulembakani P, Rubin E, Wolfe N (2017). Pandemics: Risks, Impacts, and Mitigation: The World Bank, 315–345

  121. Mahnert A, Moissl-Eichinger C, Berg G (2015). Microbiome interplay: plants alter microbial abundance and diversity within the built environment. Frontiers in Microbiology, 6: 887

    Google Scholar 

  122. Marchesi I, Marchegiano P, Bargellini A, Cencetti S, Frezza G, Miselli M, Borella P (2011). Effectiveness of different methods to control legionella in the water supply: ten-year experience in an Italian university hospital. Journal of Hospital Infection, 77(1): 47–51

    CAS  Google Scholar 

  123. Mathys W, Stanke J, Harmuth M, Junge-Mathys E (2008). Occurrence of Legionella in hot water systems of single-family residences in suburbs of two German cities with special reference to solar and district heating. International Journal of Hygiene and Environmental Health, 211(1–2): 179–185

    Google Scholar 

  124. Meadow J F, Altrichter A E, Bateman A C, Stenson J, Brown G Z, Green J L, Bohannan B J M (2015). Humans differ in their personal microbial cloud. Peer J, 3:e1258

    Google Scholar 

  125. Meadow J F, Altrichter A E, Kembel S W, Kline J, Mhuireach G, Moriyama M, Northcutt D, O’ connor T K, Womack A M, Brown G Z, Green J L, Bohannan B J M (2014a). Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source. Indoor Air, 24(1): 41–48

    CAS  Google Scholar 

  126. Meadow J F, Altrichter A E, Kembel S W, Moriyama M, O’connor T K, Womack A M, Brown G Z, Green J L, Bohannan B J M (2014b). Bacterial communities on classroom surfaces vary with human contact. Microbiome, 2: 7

    Google Scholar 

  127. Medeiros A B A, Enders B C, Lira A L B C (2015). The Florence Nightingale’s environmental theory: a critical analysis. Escola Anna Nery, 19(3): 518–524

    Google Scholar 

  128. Memarzadeh F (2013). Literature review: room ventilation and airborne disease transmission. American Society for Healthcare Engineering

  129. Menzies D, Popa J, Hanley J A, Rand T, Milton D K (2003). Effect of ultraviolet germicidal lights installed in office ventilation systems on workers’ health and wellbeing: double-blind multiple crossover trial. Lancet, 362(9398): 1785–1791

    Google Scholar 

  130. Miletto M, Lindow S E (2015). Relative and contextual contribution of different sources to the composition and abundance of indoor air bacteria in residences. Microbiome, 3: 61

    Google Scholar 

  131. Miller R, Simmons S, Dale C, Stachowiak J, Stibich M (2015). Utilization and impact of a pulsed-xenon ultraviolet room disinfection system and multidisciplinary care team on Clostridium difficile in a long-term acute care facility. American Journal of Infection Control, 43(12): 1350–1353

    Google Scholar 

  132. Mouchtouri V, Velonakis E, Tsakalof A, Kapoula C, Goutziana G, Vatopoulos A, Kremastinou J, Hadjichristodoulou C (2007). Risk factors for contamination of hotel water distribution systems by Legionella species. Applied and Environmental Microbiology, 73(5): 1489–1492

    CAS  Google Scholar 

  133. Mudarri D, Fisk W J (2007). Public health and economic impact of dampness and mold. Indoor Air, 17(3): 226–235

    CAS  Google Scholar 

  134. Mukherjee N, Dowd S, Wise A, Kedia S, Vohra V, Banerjee P (2014). Diversity of bacterial communities of fitness center surfaces in a U.S. metropolitan area. International Journal of Environmental Research and Public Health, 11(12): 12544–12561

    Google Scholar 

  135. Nagaraja A, Visintainer P, Haas J P, Menz J, Wormser G P, Montecalvo M A (2015). Clostridium difficile infections before and during use of ultraviolet disinfection. American Journal of Infection Control, 43(9): 940–945

    Google Scholar 

  136. NASEM (2017). Microbiomes of the built environment: a research agenda for indoor microbiology, human health, and buildings: National Academies Press

    Google Scholar 

  137. Nazaroff W W, Weschler C J (2004). Cleaning products and air fresheners: exposure to primary and secondary air pollutants. Atmospheric Environment, 38(18): 2841–2865

    CAS  Google Scholar 

  138. Nice J A, Bole S (2016). Investigating the impact of architectural planning and functional program on the indoor microbiome. A health concern. In: Proceeding of the 14th International Conference of Indoor Air Quality and Climate Ghent, Belgium

    Google Scholar 

  139. Nightingale F (1863). Notes on hospitals. Longman, Green, Longman, Roberts, and Green

    Google Scholar 

  140. Nordahl Petersen T, Rasmussen S, Hasman H, Carøe C, Badum J, Charlotte Schultz A, Bergmark L, Svendsen C A, Lund O, Sicheritz-Ponten T, Aarestrup F M (2015). Meta-genomic analysis of toilet waste from long distance flights; a step towards global surveillance of infectious diseases and antimicrobial resistance. Scientific Reports, 5: 11444

    Google Scholar 

  141. NRC (2006). Drinking Water Distribution Systems: Assessing and Reducing Risks. National Academies Press

    Google Scholar 

  142. Ondrusch N, Kreft J (2011). Blue and red light modulates SigB-dependent gene transcription, swimming motility and invasiveness in Listeria monocytogenes. PLoS One, 6(1):e16151

    CAS  Google Scholar 

  143. Oppezzo O J (2012). Contribution of UVB radiation to bacterial inactivation by natural sunlight. Journal of Photochemistry and Photobiology. B, Biology, 115: 58–62

    CAS  Google Scholar 

  144. Pasanen A L, Juutinen T, Jantunen M J, Kalliokoski P (1992). Occurrence and moisture requirements of microbial growth in building materials. International Biodeterioration & Biodegradation, 30(4): 273–283

    Google Scholar 

  145. Paszko-Kolva C, Sawyer T K, Palmer C J, Nerad T A, Fayer R (1998). Examination of microbial contaminants of emergency showers and eyewash stations. Journal of Industrial Microbiology & Biotechnology, 20(3–4): 139–143

    CAS  Google Scholar 

  146. Patra V, Byrne S N, Wolf P (2016). The skin microbiome: Is it affected by UV-induced immune suppression? Frontiers in Microbiology, 7: 1235

    Google Scholar 

  147. Perkins S D, Mayfield J, Fraser V, Angenent L T (2009). Potentially pathogenic bacteria in shower water and air of a stem cell transplant unit. Applied and Environmental Microbiology, 75(16): 5363–5372

    CAS  Google Scholar 

  148. Pessi A-M, Suonketo J, Pentti M, Kurkilahti M, Peltola K, Rantio-Lehtimaki, A (2002). Microbial growth inside insulated external walls as an indoor air biocontamination source. Applied and Environmental Microbiology, 68(2): 963–967

    CAS  Google Scholar 

  149. Ponsoni K, Raddi M S G (2010). Indoor air quality related to occupancy at an air-conditioned public building. Brazilian Archives of Biology and Technology, 53(1): 99–103

    CAS  Google Scholar 

  150. Popkin B M (1999). Urbanization, lifestyle changes and the nutrition transition. World Development, 27(11): 1905–1916

    Google Scholar 

  151. Prather K A, Wang C C, Schooley R T (2020). Reducing transmission of SARS-CoV-2. Science, 368(6498): 1422–1424

    CAS  Google Scholar 

  152. Prescott S L, Larcombe D L, Logan A C, West C, Burks W, Caraballo L, Levin M, Etten E V, Horwitz P, Kozyrskyj A, Campbell D E (2017). The skin microbiome: impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organization Journal, 10: 29

    Google Scholar 

  153. Proctor C R, Dai D, Edwards M A, Pruden A (2017). Interactive effects of temperature, organic carbon, and pipe material on microbiota composition and Legionella pneumophila in hot water plumbing systems. Microbiome, 5: 130

    Google Scholar 

  154. Prussin A J II, Schwake D O, Marr L C (2017). Ten questions concerning the aerosolization and transmission of Legionella in the built environment. Building and Environment, 123: 684–695

    Google Scholar 

  155. Purcell A T (1987). The relationship between buildings and behaviour. Building and Environment, 22(3): 215–232

    Google Scholar 

  156. Putri W C W S, Muscatello D J, Stockwell M S, Newall A T (2018). Economic burden of seasonal influenza in the United States. Vaccine, 36(27): 3960–3966

    Google Scholar 

  157. Qian J, Hospodsky D, Yamamoto N, Nazaroff W W, Peccia J (2012). Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom. Indoor Air, 22(4): 339–351

    CAS  Google Scholar 

  158. Ridaura V K, Faith J J, Rey F E, Cheng J, Duncan A E, Kau A L, Griffin N W, Lombard V, Henrissat B, Bain J R, Muehlbauer M J, Ilkayeva O, Semenkovich C F, Funai K, Hayashi D K, Lyle B J, Martini M C, Ursell L K, Clemente J C, Van Treuren W, Walters W A, Knight R, Newgard C B, Heath A C, Gordon J I (2013). Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science, 341(6150): 124121

    Google Scholar 

  159. Rintala H, Nevalainen A, Suutari M (2002). Diversity of streptomycetes in water-damaged building materials based on 16S rDNA sequences. Letters in Applied Microbiology, 34(6): 439–443

    CAS  Article  Google Scholar 

  160. Riva M A, Benedetti M, Cesana G (2014). Pandemic fear and literature: Observations from Jack London’s The Scarlet Plague. Emerging Infectious Diseases, 20(10): 1753–1757

    Article  Google Scholar 

  161. Rivera J M, Aguilar L, Granizo J J, Vos-Arenilla A, Gimenez M J, Aguiar J M, Prieto J (2007). Isolation of Legionella species/serogroups from water cooling systems compared with potable water systems in Spanish healthcare facilities. Journal of Hospital Infection, 67(4): 360–366

    Article  Google Scholar 

  162. Robertson C E, Baumgartner L K, Harris J K, Peterson K L, Stevens M J, Frank D N, Pace N R (2013). Culture-independent analysis of aerosol microbiology in a metropolitan subway system. Applied and Environmental Microbiology, 79(11): 3485–3493

    CAS  Article  Google Scholar 

  163. Ross A A, Doxey A C, Neufeld J D (2017). The skin microbiome of cohabiting couples. mSystems, 2(4):e00043-17

    CAS  Article  Google Scholar 

  164. Ross A A, Neufeld J D (2015). Microbial biogeography of a university campus. Microbiome, 3: 66

    Google Scholar 

  165. Round J L, Mazmanian S K (2009). The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews. Immunology, 9(5): 313–323

    CAS  Google Scholar 

  166. Salathe M, Kazandjieva M, Lee JW, Levis P, Feldman M W, Jones J H (2010). A high-resolution human contact network for infectious disease transmission. Proceedings of the National Academy of Sciences of the United States of America, 107(51): 22020–22025

    CAS  Google Scholar 

  167. Sandhu B S, Singh C K (2009). Relationship of sunlight and humidity on the virulence of street rabies virus in saliva. Indian Journal of Animal Sciences, 79: 24

    Google Scholar 

  168. Seppanen O, Fisk W J (2002). Relationship of SBS-symptoms and ventilation system type in office buildings. In: Proceedings of 9th International Conference on Indoor Air Quality and Climate, Monterey, California

    Google Scholar 

  169. Sheffer P J, Stout J E, Wagener M M, Muder R R (2005). Efficacy of new point-of-use water filter for preventing exposure to Legionella and waterborne bacteria. American Journal of Infection Control, 33(5):S20-S25

    Google Scholar 

  170. Simons A, Bertron A, Roux C, Laborel-Preneron A, Aubert J E, Roques C (2019). Susceptibility of earth-based construction materials to fungal proliferation: laboratory and in situ assessment. RILEM Technical Letters, 3: 140–149

    Google Scholar 

  171. Sliney D (2013). Balancing the risk of eye irritation from UV-C with infection from bioaerosols. Photochemistry and Photobiology, 89(4): 770–776

    CAS  Google Scholar 

  172. Smith D P, Alverdy J C, Siegel J A (2013). Design considerations for home and hospital microbiome studies: National Academies Press

    Google Scholar 

  173. Stefanowski B K, Curling S F, Ormondroyd G A (2017). A rapid screening method to determine the susceptibility of bio-based construction and insulation products to mould growth. International Biodeterioration & Biodegradation, 116: 124–132

    Google Scholar 

  174. Sydnor E R M, Bova G, Gimburg A, Cosgrove S E, Perl T M, Maragakis L L (2012). Electronic-eye faucets: Legionella species contamination in healthcare settings. Infection Control and Hospital Epidemiology, 33(3): 235–240

    Google Scholar 

  175. Takada A, Matsushita K, Horioka S, Furuichi Y, Sumi Y (2017). Bactericidal effects of 310 nm ultraviolet light-emitting diode irradiation on oral bacteria. BMC Oral Health, 17: 96

    Google Scholar 

  176. Tang J W (2009). The effect of environmental parameters on the survival of airborne infectious agents. Journal of the Royal Society, Interface, 6(suppl_6):S737–S746

    Google Scholar 

  177. Täubel M, Leppanen H K (2017). Microbial Exposures in Schools and Daycare Centers: in Exposure to Microbiological Agents in Indoor and Occupational Environments Springer International Publishing, 253–287

    Google Scholar 

  178. Thomas V, Herrera-Rimann K, Blanc D S, Greub G (2006). Biodiversity of amoebae and amoeba-resisting bacteria in a hospital water network. Applied and Environmental Microbiology, 72(4): 2428–2438

    CAS  Google Scholar 

  179. Thomson R, Tolson C, Carter R, Coulter C, Huygens F, Hargreaves M (2013). Isolation of nontuberculous mycobacteria (NTM) from household water and shower aerosols in patients with pulmonary disease caused by NTM. Journal of Clinical Microbiology, 51(9): 3006–3011

    Google Scholar 

  180. Tringe S G, Zhang T, Liu X, Yu Y, Lee W H, Yap J, Yao F, Suan S T, Ing S K, Haynes M, Rohwer F, Wei C L, Tan P, Bristow J, Rubin E M, Ruan Y (2008). The airborne metagenome in an indoor urban environment. PLoS One, 3(4):el862

    Google Scholar 

  181. Tsongas G A, Riordan F (2016). Minimum conditions for visible mold growth. ASHRAE Journal, 58(9): 32

    Google Scholar 

  182. Tuomi T, Reijula K, Johnsson T, Hemminki K, Hintikka E L, Lindroos O, Kalso S, Koukila-Kahkala P, Mussalo-Rauhamaa H, Haahtela T (2000). Mycotoxins in crude building materials from water-damaged buildings. Applied and Environmental Microbiology, 66(5): 1899–1904

    CAS  Google Scholar 

  183. Turnbaugh P J, Ley R E, Mahowald M A, Magrini V, Mardis E R, Gordon J I (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122): 1027–1031

    Google Scholar 

  184. Udawattha C, Galkanda H, Ariyarathne I S, Jayasinghe G Y, Halwatura R (2018). Mold growth and moss growth on tropical walls. Building and Environment, 137: 268–279

    Google Scholar 

  185. Vacher S, Hernandez C, Bärtschi C, Poussereau N (2010). Impact of paint and wall-paper on mould growth on plasterboards and aluminum. Building and Environment, 45(4): 916–921

    Google Scholar 

  186. van der Kooij D, Veenendaal H R, Scheffer W J (2005). Biofilm formation and multiplication of Legionella in a model warm water system with pipes of copper, stainless steel and cross-linked polyethylene. Water Research, 39(13): 2789–2798

    Google Scholar 

  187. van Eck N J, Waltman L (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2): 523–538

    Google Scholar 

  188. Verdier T, Coutand M, Bertron A, Roques C (2014). A review of indoor microbial growth across building materials and sampling and analysis methods. Building and Environment, 80: 136–149

    Google Scholar 

  189. Wang H, Edwards M, Falkinham J O III, Pruden A (2012). Molecular survey of the occurrence of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa, and amoeba hosts in two chloraminated drinking water distribution systems. Applied and Environmental Microbiology, 78(17): 6285–6294

    CAS  Google Scholar 

  190. Warscheid T, Braams J (2000). Biodeterioration of stone: a review. International Biodeterioration & Biodegradation, 46(4): 343–368

    CAS  Google Scholar 

  191. Weber D J, Kanamori H, Rutala W A (2016). ’No touch’ technologies for environmental decontamination. Current Opinion in Infectious Diseases, 29(4): 424–431

    CAS  Google Scholar 

  192. West R, Michie S, Rubin G J, Amlot R (2020). Applying principles of behaviour change to reduce SARS-CoV-2 transmission. Nature Human Behaviour, 4(5): 451–459

    Google Scholar 

  193. Wilkins D, Leung M H Y, Lee P K H (2016). Indoor air bacterial communities in Hong Kong households assemble independently of occupant skin microbiomes. Environmental Microbiology, 18(6): 1754–1763

    CAS  Google Scholar 

  194. Williams M M, Chen T H, Keane T, Toney N, Toney S, Armbruster C R, Butler W R, Arduino M J (2011). Point-of-use membrane filtration and hyperchlorination to prevent patient exposure to rapidly growing mycobacteria in the potable water supply of a skilled nursing facility. Infection Control and Hospital Epidemiology, 32(9): 837–844

    Google Scholar 

  195. Wolkoff P (2018). Indoor air humidity, air quality, and health 3 An overview. International Journal of Hygiene and Environmental Health, 221(3): 376–390

    Google Scholar 

  196. Wood M, Gibbons S M, Lax S, Eshoo-Anton T W, Owens S M, Kennedy S, Gilbert J A, Hampton-Marcell J T (2015). Athletic equipment microbiota are shaped by interactions with human skin. Microbiome, 3: 25

    Google Scholar 

  197. Wood R, Morrow C, Ginsberg S, Piccoli E, Kalil D, Sassi A, Walensky R P, Andrews J R (2014). Quantification of shared air: A social and environmental determinant of airborne disease transmission. PLoS One, 9(9):e106622

    Google Scholar 

  198. Wu T, Taubel M, Holopainen R, Viitanen A K, Vainiotalo S, Tuomi T, Keskinen J, Hyvarinen A, Hameri K, Saari S E, Boor B E (2018). Infant and adult inhalation exposure to resuspended biological particulate matter. Environmental Science & Technology, 52(1): 237–247

    CAS  Google Scholar 

  199. Yamamoto N, Hospodsky D, Dannemiller K C, Nazaroff W W, Peccia J (2015). Indoor emissions as a primary source of airborne allergenic fungal particles in classrooms. Environmental Science & Technology, 49(8): 5098–5106

    CAS  Google Scholar 

  200. Yapicioglu H, Gokmen T G, Yildizdas D, Koksal F, Ozlu F, Kale-Cekinmez E, Mert K, Mutlu B, Satar M, Narli N, Candevir A (2012). Pseudomonas aeruginosa infections due to electronic faucets in a neonatal intensive care unit. Journal of Paediatrics and Child Health, 48(5): 430–434

    Google Scholar 

  201. You R, Cui W, Chen C, Zhao B (2013). Measuring the short-term emission rates of particles in the “personal cloud” with different clothes and activity intensities in a sealed chamber. Aerosol and Air Quality Research, 13(3): 911–921

    Google Scholar 

  202. Yu V L, Stout J E (2000). Hospital characteristics associated with colonization of water systems by Legionella and risk of nosocomial Legionnaires’ disease: A cohort study of 15 hospitals. Infection Control and Hospital Epidemiology, 21(7): 434–435

    CAS  Google Scholar 

  203. Zhao Y, Aarnink A J A, Dijkman R, Fabri T, De Jong M C M, Groot Koerkamp P W G (2012). Effects of temperature, relative humidity, absolute humidity, and evaporation potential on survival of airborne Gumboro vaccine virus. Applied and Environmental Microbiology, 78(4): 1048–1054

    CAS  Google Scholar 

  204. Zifferblatt S M (1972). Architecture and human behavior: Toward increased understanding of a functional relationship. Educational Technology, 12(8): 54–57

    Google Scholar 

Download references

Acknowledgements

This work is partly supported by US National Science Foundation (Award No. 1952140 and 2026719). Any opinions, findings recommendations, and conclusions in this paper are those of the authors, and do not necessarily reflect the views of US National Science Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qiang He.

Additional information

Highlights

• The built environment, occupants, and microbiomes constitute an integrated ecosystem.

• This review summarizes research progress which has focused primarily on microbiomes.

• Critical research needs include studying impacts of occupant behaviors on microbiomes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, S., Yang, Z., Hu, D. et al. Understanding building-occupant-microbiome interactions toward healthy built environments: A review. Front. Environ. Sci. Eng. 15, 65 (2021). https://doi.org/10.1007/s11783-020-1357-3

Download citation

Keywords

  • Microbiome
  • Built Environment
  • Occupant
  • Health