Skip to main content

Advertisement

Log in

The source and transport of bioaerosols in the air: A review

  • Review Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Recent pandemic outbreak of the corona-virus disease 2019 (COVID-19) has raised widespread concerns about the importance of the bioaerosols. They are atmospheric aerosol particles of biological origins, mainly including bacteria, fungi, viruses, pollen, and cell debris. Bioaerosols can exert a substantial impact on ecosystems, climate change, air quality, and public health. Here, we review several relevant topics on bioaerosols, including sampling and detection techniques, characterization, effects on health and air quality, and control methods. However, very few studies have focused on the source apportionment and transport of bioaerosols. The knowledge of the sources and transport pathways of bioaerosols is essential for a comprehensive understanding of the role microorganisms play in the atmosphere and control the spread of epidemic diseases associated with them. Therefore, this review comprehensively summarizes the up to date progress on the source characteristics, source identification, and diffusion and transport process of bioaerosols. We intercompare three types of diffusion and transport models, with a special emphasis on a widely used mathematical model. This review also highlights the main factors affecting the source emission and transport process, such as biogeographic regions, land-use types, and environmental factors. Finally, this review outlines future perspectives on bioaerosols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abd Aziz A, Lee K, Park B, Park H, Park K, Choi I G, Chang I S (2018). Comparative study of the airborne microbial communities and their functional composition in fine particulate matter (PM2.5) under nonextreme and extreme PM2.5 conditions. Atmospheric Environment, 194: 82–92

    Article  CAS  Google Scholar 

  • Alves D A, Glynn A R, Steele K E, Lackemeyer M G, Garza N L, Buck J G, Mech C, Reed D S (2010). Aerosol exposure to the Angola Strain of Marburg Virus causes lethal viral hemorrhagic fever in cynomolgus macaques. Veterinary Pathology, 47(5): 831–851

    Article  CAS  Google Scholar 

  • Amato P, Joly M, Schaupp C, Attard E, Mohler O, Morris C E, Brunet Y, Delort A M (2015). Survival and ice nucleation activity of bacteria as aerosols in a cloud simulation chamber. Atmospheric Chemistry and Physics, 15(11): 6455–6465

    Article  CAS  Google Scholar 

  • Anglada J M, Martins-Costa M, Francisco J S, Ruiz-Lopez M F (2015). Interconnection of reactive oxygen species chemistry across the interfaces of atmospheric, environmental, and biological processes. Accounts of Chemical Research, 48(3): 575–583

    Article  CAS  Google Scholar 

  • Ansari T U, Valsan A E, Ojha N, Ravikrishna R, Narasimhan B, Gunthe S S (2015). Model simulations of fungal spore distribution over the Indian region. Atmospheric Environment, 122: 552–560

    Article  CAS  Google Scholar 

  • Asadi S, Bouvier N, Wexler A S, Ristenpart W D (2020). The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles? Aerosol Science and Technology, 54(6): 635–638

    Article  CAS  Google Scholar 

  • Balyan P, Das S, Ghosh C, Baneriee B D (2017). Spatial variation of biogenic aerosols at different land use configurations in urban delhi. International Journal of Applied Environmental Sciences, 12(5(1)): 731–744

    Google Scholar 

  • Balyan P, Ghosh C, Das S, Banerjee B D (2020). Spatio-temporal characterisation of bioaerosols at diverse outdoor land-use sites in an urban environment. Aerobiologia, 36(1): 77–81

    Article  Google Scholar 

  • Barberan A, Dunn R R, Reich B J, Pacifici K, Laber E B, Menninger H L, Morton J M, Henley J B, Leff J W, Miller S L, Fierer N (2015a). The ecology of microscopic life in household dust. Proceedings of the Royal Society B-Biological Sciences, 282(1814): 212–220

    Article  Google Scholar 

  • Barberan A, Ladau J, Leff J W, Pollard K S, Menninger H L, Dunn R R, Fierer N (2015b). Continental-scale distributions of dust-associated bacteria and fungi. Proceedings of the National Academy of Sciences of the United States of America, 112(18): 5756–5761

    Article  CAS  Google Scholar 

  • Barnaba F, Bolignano A, Di Liberto L, Morelli M, Lucarelli F, Nava S, Perrino C, Canepari S, Basart S, Costabile F, Dionisi D, Ciampichetti S, Sozzi R, Gobbi G P (2017). Desert dust contribution to PM10 loads in Italy: Methods and recommendations addressing the relevant European Commission Guidelines in support to the Air Quality Directive 2008/50. Atmospheric Environment, 161: 288–305

    Article  CAS  Google Scholar 

  • Bauer H, Giebl H, Hitzenberger R, Kasper-Giebl A, Reischl G, Zibuschka F, Puxbaum H (2003). Airborne bacteria as cloud condensation nuclei. Journal of Geophysical Research, 108(D21): AAC2–1–AAC2–AAC2–5

    Article  CAS  Google Scholar 

  • Bowers R M, Clements N, Emerson J B, Wiedinmyer C, Hannigan M P, Fierer N (2013). Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere. Environmental Science & Technology, 47(21): 12097–12106

    Article  CAS  Google Scholar 

  • Bowers R M, Mcletchie S, Knight R, Fierer N (2011a). Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME Journal, 5(4): 601–612

    Article  CAS  Google Scholar 

  • Bowers R M, Sullivan A P, Costello E K, Collett J L Jr, Knight R, Fierer N (2011b). Sources of bacteria in outdoor air across cities in the midwestern United States. Applied and Environmental Microbiology, 77(18): 6350–6356

    Article  CAS  Google Scholar 

  • Bui V N, Nguyen T T, Hung N V, Bui A N, Mccallion K A, Lee H S, Than S T, Coleman K K, Gray G C (2019). Bioaerosol sampling to detect avian influenza virus in Hanoi’s largest live poultry market. Clinical Infectious Diseases, 68(6): 972–975

    Article  Google Scholar 

  • Burrows S M, Butler T, Jöckel P, Tost H, Kerkweg A, Pöschl U, Lawrence M G (2009a). Bacteria in the global atmosphere — part 2: modeling of emissions and transport between different ecosystems. Atmospheric Chemistry and Physics, 9(23): 9281–9297

    Article  CAS  Google Scholar 

  • Burrows S M, Elbert W, Lawrence M G, Pöschl U (2009b). Bacteria in the global atmosphere — part 1: review and synthesis of literature data for different ecosystems. Atmospheric Chemistry and Physics, 9(23): 9263–9280

    Article  CAS  Google Scholar 

  • Burrows S M, Rayner P J, Butler T, Lawrence M G (2013). Estimating bacteria emissions from inversion of atmospheric transport: sensitivity to modelled particle characteristics. Atmospheric Chemistry and Physics, 13(11): 5473–5488

    Article  CAS  Google Scholar 

  • Cáliz J, Triadó-Margarit X, Camarero L, Casamayor E O (2018). A long-term survey unveils strong seasonal patterns in the airborne microbiome coupled to general and regional atmospheric circulations. Proceedings of the National Academy of Sciences of the United States of America, 115(48): 12229–12234

    Article  CAS  Google Scholar 

  • Cha S, Lee D, Jang J H, Lim S, Yang D, Seo T (2016). Alterations in the airborne bacterial community during Asian dust events occurring between February and March 2015 in Korea. Scientific Reports, 6(1): 37271

    Article  CAS  Google Scholar 

  • Chao J, Mu X, Xue Y, Li F, Li W, Lin C H, Pei J, Chen Q (2014). A modified tracer-gas decay model for ventilation rate measurements in long and narrow spaces. Indoor and Built Environment, 23(7): 1012–1020

    Article  Google Scholar 

  • Chi X L, Tang Z Y, Fang J Y (2014). Patterns of phylogenetic beta diversity in China’s grasslandsin in relation to geographical and environmental distance. Basic and Applied Ecology, 15(5): 416–425

    Article  Google Scholar 

  • Cho B C, Hwang C Y (2011). Prokaryotic abundance and 16S rRNA gene sequences detected in marine aerosols on the East Sea (Korea). FEMS Microbiology Ecology, 76(2): 327–341

    Article  CAS  Google Scholar 

  • Costello E K, Lauber C L, Hamady M, Fierer N, Gordon J I, Knight R (2009). Bacterial community variation in human body habitats across space and time. Science, 326(5960): 1694–1697

    Article  CAS  Google Scholar 

  • Dai P, Shen D, Tang Q, Huang K, Li C (2020). PM2.5 from a broiler breeding production system: The characteristics and microbial community analysis. Environmental Pollution, 256: 113368

    Article  CAS  Google Scholar 

  • Degois J, Clerc F, Simon X, Bontemps C, Leblond P, Duquenne P (2017). First metagenomic survey of the microbial diversity in bioaerosols emitted in waste sorting plants. Annals of Work Exposures and Health, 61(9): 1076–1086

    Article  Google Scholar 

  • Després V, Huffman J A, Burrows S M, Hoose C, Safatov A, Buryak G, Fröhlich-Nowoisky J, Elbert W, Andreae M, Pöschl U, Jaenicke R (2012). Primary biological aerosol particles in the atmosphere: a review. Tellus B. Chemical and Physical Meteorology, 64(1): 15598

    Google Scholar 

  • Després V, Nowoisky J, Klose M, Conrad R, Pöschl U (2007). Molecular genetics and diversity of primary biogenic aerosol particles in urban, rural, and high-alpine air. Biogeosciences Discussions, 4(1): 349–384

    Google Scholar 

  • Du P, Du R, Ren W, Lu Z, Fu P (2018). Seasonal variation characteristic of inhalable microbial communities in PM2.5 in Beijing city, China. Science of the Total Environment, 610–611: 308–315

    Article  CAS  Google Scholar 

  • El Jarroudi M, Karjoun H, Kouadio L, El Jarroudi M (2020). Mathematical modelling of non-local spore dispersion of windborne pathogens causing fungal diseases. Applied Mathematics and Computation, 376: 125107

    Article  Google Scholar 

  • Estillore A D, Trueblood J V, Grassian V H (2016). Atmospheric chemistry of bioaerosols: heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases. Chemical Science (Cambridge), 7(11): 6604–6616

    Article  CAS  Google Scholar 

  • Fan C, Li Y, Liu P, Mu F, Xie Z, Lu R, Qi Y, Wang B, Jin C (2019). Characteristics of airborne opportunistic pathogenic bacteria during autumn and winter in Xi’an, China. Science of the Total Environment, 672: 834–845

    Article  CAS  Google Scholar 

  • Fan H, Li X, Deng J, Da G, Gehin E, Yao M (2017). Time-dependent sze-resolved bacterial and fungal aerosols in Beijing subway. Aerosol and Air Quality Research, 17(3): 799–809

    Article  CAS  Google Scholar 

  • Fraczek K, Kozdrój J, Górny R L, Cyprowski M, Golofit-Szymczak M (2017). Fungal air contamination in distinct sites within a municipal landfill area. International Journal of Environmental Science and Technology, 14(12): 2637–2648

    Article  CAS  Google Scholar 

  • Fröhlich-Nowoisky J, Kampf C J, Weber B, Huffman J A, Pöhlker C, Andreae M O, Lang-Yona N, Burrows S M, Gunthe S S, Elbert W, Su H, Hoor P, Thines E, Hoffmann T, Després V R, Pöschl U (2016). Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmospheric Research, 182: 346–376

    Article  CAS  Google Scholar 

  • Garrison V H, Majewski M S, Foreman W T, Genualdi S A, Mohammed A, Simonich S L M (2014). Persistent organic contaminants in Saharan dust air masses in West Africa, Cape Verde and the eastern Caribbean. Science of the Total Environment, 468–469: 530–543

    Article  CAS  Google Scholar 

  • Garza A G, Van Cuyk S M, Brown M J, Omberg K M (2014). Detection of the urban release of a bacillus anthracis simulant by air sampling. Biosecurity and Bioterrorism, 12(2): 66–75

    Article  Google Scholar 

  • Genitsaris S, Stefanidou N, Katsiapi M, Kormas K A, Sommer U, Moustaka-Gouni M (2017). Variability of airborne bacteria in an urban Mediterranean area (Thessaloniki, Greece). Atmospheric Environment, 157: 101–110

    Article  CAS  Google Scholar 

  • Ghanizadeh F, Godini H (2018). A review of the chemical and biological pollutants in indoor air in hospitals and assessing their effects on the health of patients, staff and visitors. Reviews on Environmental Health, 33(3): 231–245

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Arigela R, Gupta S K, Raghunathan R (2019). Dynamic response of passive release of fungal spores from exposure to air. Journal of Aerosol Science, 133: 37–48

    Article  CAS  Google Scholar 

  • Gou H, Lu J, Li S, Tong Y, Xie C, Zheng X (2016). Assessment of microbial communities in PM1 and PM10 of Urumqi during winter. Environmental Pollution, 214: 202–210

    Article  CAS  Google Scholar 

  • Hagerman A D, South D D, Sondgerath T C, Patyk K A, Sanson R L, Schumacher R S, Delgado A H, Magzamen S (2018). Temporal and geographic distribution of weather conditions favorable to Check 1 airborne spread of foot-and-mouth disease in the coterminous United States. Preventive Veterinary Medicine, 161: 41–49

    Article  Google Scholar 

  • Han H J, Wen H L, Zhou C M, Chen F F, Luo L M, Liu J W, Yu X J (2015). Bats as reservoirs of severe emerging infectious diseases. Virus Research, 205: 1–6

    Article  CAS  Google Scholar 

  • Hoose C, Kristjansson J E, Burrows S M (2010). How important is biological ice nucleation in clouds on a global scale? Environmental Research Letters, 5(2): 024009

    Article  CAS  Google Scholar 

  • Hospodsky D, Yamamoto N, Nazaroff W W, Miller D, Gorthala S, Peccia J (2015). Characterizing airborne fungal and bacterial concentrations and emission rates in six occupied children’s classrooms. Indoor Air, 25(6): 641–652

    Article  CAS  Google Scholar 

  • Hsiao T C, Lin A Y C, Lien W C, Lin Y C (2020). Size distribution, biological characteristics and emerging contaminants of aerosols emitted from an urban wastewater treatment plant. Journal of Hazardous Materials, 388: 121809

    Article  CAS  Google Scholar 

  • Hu W, Murata K, Fukuyama S, Kawai Y, Oka E, Uematsu M, Zhang D (2017). Concentration and viability of airborne bacteria over the kuroshio extension region in the northwestern Pacific Ocean: data from three cruises. Journal of Geophysical Research, D, Atmospheres, 122(23): 12891–12905

    Google Scholar 

  • Hu W, Wang Z, Huang S, Ren L, Yue S, Li P, Xie Q, Zhao W, Wei L, Ren H, Wu L, Deng J, Fu P (2020). Biological aerosol particles in polluted regions. Current Pollution Reports, 6(2): 65–89

    Article  CAS  Google Scholar 

  • Hummel M, Hoose C, Gallagher M, Healy D A, Huffman J A, O’connor D, Poschl U, Pohlker C, Robinson N H, Schnaiter M, Sodeau J R, Stengel M, Toprak E, Vogel H (2015). Regional-scale simulations of fungal spore aerosols using an emission parameterization adapted to local measurements of fluorescent biological aerosol particles. Atmospheric Chemistry and Physics, 15(11): 6127–6146

    Article  CAS  Google Scholar 

  • Jahne M A, Rogers S W, Holsen T M, Grimberg S J, Ramler I P, Kim S (2016). Bioaerosol deposition to food crops near manure application: Quantitative microbial risk assessment. Journal of Environmental Quality, 45(2): 666–674

    Article  CAS  Google Scholar 

  • Jones A M, Harrison R M (2004). The effects of meteorological factors on atmospheric bioaerosol concentrations—a review. Science of the Total Environment, 326(1/3): 151–180

    Article  CAS  Google Scholar 

  • Joung Y S, Ge Z F, Buie C R (2017). Bioaerosol generation by raindrops on soil. Nature Communications, 8(1): 14668

    Article  Google Scholar 

  • Kang S M, Heo K J, Lee B U (2015). Why does rain increase the concentrations of environmental bioaerosols during monsoon? Aerosol and Air Quality Research, 15(6): 2320–2324

    Article  CAS  Google Scholar 

  • Kim K H, Kabir E, Jahan S A (2018). Airborne bioaerosols and their impact on human health. Journal of Environmental Sciences-China, 67: 23–35

    Article  Google Scholar 

  • Knights D, Kuczynski J, Charlson E S, Zaneveld J, Mozer M C, Collman R G, Bushman F D, Knight R, Kelley S T (2011). Bayesian community-wide culture-independent microbial source tracking. Nature Methods, 8(9): 761–763

    Article  CAS  Google Scholar 

  • Kowalski M, Pastuszka J S (2018). Effect of ambient air temperature and solar radiation on changes in bacterial and fungal aerosols concentration in the urban environment. Annals of Agricultural and Environmental Medicine, 25(2): 259–261

    Article  CAS  Google Scholar 

  • Kowalski M, Wolany J, Pastuszka J S, Plaza G, Wlazlo A, Ulfig K, Malina A (2017). Characteristics of airborne bacteria and fungi in some Polish wastewater treatment plants. International Journal of Environmental Science and Technology, 14(10): 2181–2192

    Article  CAS  Google Scholar 

  • Kumari P, Woo C, Yamamoto N, Choi H L (2016). Variations in abundance, diversity and community composition of airborne fungi in swine houses across seasons. Scientific Reports, 6(1): 37929

    Article  CAS  Google Scholar 

  • Lee I, Bitog J P P, Hong S W, Seo I H, Kwon K S, Bartzanas T, Kacira M (2013). The past, present and future of CFD for agro-environmental applications. Computers and Electronics in Agriculture, 93: 168–183

    Article  Google Scholar 

  • Li W, Yang J, Zhang D, Li B, Wang E, Yuan H (2018). Concentration and community of airborne bacteria in response to cyclicalhaze events during the fall and midwinter in Beijing, China. Frontiers in Microbiology, 9: 12

    Article  Google Scholar 

  • Lin Y, Xiangdong L, Yihuan Y, Jiyuan T (2018). Effects of cough-jet on airflow and contaminant transport in an airliner cabin section. Journal of Computational Multiphase Flows, 10(2): 72–82

    Article  Google Scholar 

  • Lindsley W G, Blachere F M, Thewlis R E, Vishnu A, Davis K A, Cao G, Palmer J E, Clark K E, Fisher M A, Khakoo R, Beezhold D H (2010). Measurements of airborne influenza virus in aerosol particles from human coughs. PLoS One, 5(11): e15100

    Article  CAS  Google Scholar 

  • Lu R, Li Y P, Li W X, Xie Z S, Fan C L, Liu P X, Deng S X (2018). Bacterial community structure in atmospheric particulate matters of different sizes during the haze days in Xi’an, China. Science of the Total Environment, 637–638: 244–252

    Article  CAS  Google Scholar 

  • Luckey D T (1972). Introduction to intestinal microecology. American Journal of Clinical Nutrition, 25(12): 1292–1294

    Article  CAS  Google Scholar 

  • Lymperopoulou D S, Adams R I, Lindow S E (2016). Contribution of vegetation to the microbial composition of nearby outdoor air. Applied and Environmental Microbiology, 82(13): 3822–3833

    Article  CAS  Google Scholar 

  • Ma J, Qi X, Chen H, Li X, Zhang Z, Wang H, Sun L, Zhang L, Guo J, Morawska L, Grinshpun S A, Biswas P, Flagan R C, Yao M (2020). COVID-19 patients in earlier stages exhaled millions of SARS-CoV-2 per hour. Clinical Infectious Diseases, ciaa1283

  • Ma M, Zhen Y, Mi T (2019). Characterization of bacterial communities in bioaerosols over northern chinese marginal seas and the northwestern Pacific Ocean in spring. Journal of Applied Meteorology and Climatology, 58(4): 903–917

    Article  Google Scholar 

  • Makhalanyane T P, Valverde A, Gunnigle E, Frossard A, Ramond J B, Cowan D A (2015). Microbial ecology of hot desert edaphic systems. FEMS Microbiology Reviews, 39(2): 203–221

    Article  CAS  Google Scholar 

  • Maki T, Furumoto S, Asahi Y, Lee K C, Watanabe K, Aoki K, Murakami M, Tajiri T, Hasegawa H, Mashio A, Iwasaka Y (2018). Long-range-transported bioaerosols captured in snow cover on Mount Tateyama, Japan: impacts of Asian-dust events on airborne bacterial dynamics relating to ice-nucleation activities. Atmospheric Chemistry and Physics, 18(11): 8155–8171

    Article  CAS  Google Scholar 

  • Martin E, Kampfer P, Jackel U (2010). Quantification and identification of culturable airborne bacteria from duck houses. Annals of Occupational Hygiene, 54(2): 217–227

    CAS  Google Scholar 

  • Matthias-Maser S, Jaenicke R (1995). The size distribution of primary biological aerosol particles with radii >0.2 µm in an urban/rural influenced region. Atmospheric Research, 39(4): 279–286

    Article  Google Scholar 

  • McEachran A D, Blackwell B R, Hanson J D, Wooten K J, Mayer G D, Cox S B, Smith P N (2015). Antibiotics, bacteria, and antibiotic resistance genes: aerial transport from cattle feed yards via particulate matter. Environmental Health Perspectives, 123(4): 337–343

    Article  Google Scholar 

  • Mhuireach G, Johnson B R, Altrichter A E, Ladau J, Meadow J F, Pollard K S, Green J L (2016). Urban greenness influences airborne bacterial community composition. Science of the Total Environment, 571: 680–687

    Article  CAS  Google Scholar 

  • Michalkiewicz M (2019). Wastewater treatment plants as a source of bioaerosols. Polish Journal of Environmental Studies, 28(4): 2261–2271

    Article  Google Scholar 

  • Mu F F, Li Y P, Lu R, Qi Y Z, Xie W W, Bai W Y (2020). Source identification of airborne bacteria in the mountainous area and the urban areas. Atmospheric Research, 231: 104676

    Article  CAS  Google Scholar 

  • Murata K, Zhang D Z (2016). Concentration of bacterial aerosols in response to synoptic weather and land-sea breeze at a seaside site downwind of the Asian continent. Journal of Geophysical Research, D, Atmospheres, 121(19): 11636–11647

    Article  Google Scholar 

  • Nemergut D R, Costello E K, Hamady M, Lozupone C, Jiang L, Schmidt S K, Fierer N, Townsend A R, Cleveland C C, Stanish L, Knight R (2011). Global patterns in the biogeography of bacterial taxa. Environmental Microbiology, 13(1): 135–144

    Article  Google Scholar 

  • Nguyen T, Yu X X, Zhang Z M, Liu M M, Liu X H (2015). Relationship between types of urban forest and PM2.5 capture at three growth stages of leaves. Journal of Environmental Sciences-China, 27: 33–41

    Article  Google Scholar 

  • Núñez A, Amo De Paz G, Rastrojo A, Ferencova Z, Gutiérrez-Bustillo A M, Alcamí A, Moreno D A, Guantes R (2019). Temporal patterns of variability for prokaryotic and eukaryotic diversity in the urban air of Madrid (Spain). Atmospheric Environment, 217: 116972

    Article  CAS  Google Scholar 

  • Oduber F, Calvo A I, Blanco-Alegre C, Castro A, Nunes T, Alves C, Sorribas M, Feraandez-Gonzalez D, Vega-Maray A M, Valencia-Barrera R M, Lucarelli F, Nava S, Calzolai G, Alonso-Blanco E, Fraile B, Fialho P, Coz E, Prevot A S H, Pont V, Fraile R (2019). Unusual winter Saharan dust intrusions at Northwest Spain: Air quality, radiative and health impacts. Science of the Total Environment, 669: 213–228

    Article  CAS  Google Scholar 

  • Pagalilauan H a M, Paraoan C E M, Vital P G (2018). Detection of pathogenic bioaerosols and occupational risk in a Philippine landfill site. Archives of Environmental & Occupational Health, 73(2): 107–114

    Article  Google Scholar 

  • Pellissier L, Oppliger A, Hirzel A H, Savova-Bianchi D, Mbayo G, Mascher F, Kellenberger S, Niculita-Hirzel H (2016). Airborne and grain dust fungal community compositions are shaped regionally by plant genotypes and farming practices. Applied and Environmental Microbiology, 82(7): 2121–2131

    Article  CAS  Google Scholar 

  • Poschl U, Shiraiwa M (2015). Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene. Chemical Reviews, 115(10): 4440–4475

    Article  CAS  Google Scholar 

  • Qi Y Z, Li Y P, Xie W W, Lu R, Mu F F, Bai W Y, Du S L (2020). Temporal-spatial variations of fungal composition in PM2.5 and source tracking of airborne fungi in mountainous and urban regions. Science of the Total Environment, 708: 135027

    Article  CAS  Google Scholar 

  • Redford A J, Bowers R M, Knight R, Yan L, Fierer N (2010). The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environmental Microbiology, 12(11): 2885–2893

    Article  Google Scholar 

  • Rodo X, Ballester J, Cayan D, Melish M E, Nakamura Y, Uehara R, Burns J C (2011). Association of Kawasaki disease with tropospheric wind patterns. Scientific Reports, 1(1): 152

    Article  CAS  Google Scholar 

  • Runlan Y, Shuokun W, Xueling W, Li S, Yuandong L, Jiaokun L, Guanzhou Q, Weimin Z (2019). Community structure variation associated with airborne particulate matter at central south of China during hazy and nonhazy days. Atmospheric Pollution Research, 10(5): 1536–1542

    Article  Google Scholar 

  • Šantl-Temkiv T, Gosewinkel U, Starnawski P, Lever M, Finster K (2018). Aeolian dispersal of bacteria in southwest Greenland: their sources, abundance, diversity and physiological states. FEMS Microbiology Ecology, 94(4): 1–10

    Article  CAS  Google Scholar 

  • Sesartic A, Lohmann U, Storelvmo T (2012). Bacteria in the ECHAM5-HAM global climate model. Atmospheric Chemistry and Physics, 12(18): 8645–8661

    Article  CAS  Google Scholar 

  • Sialve B, Gales A, Hamelin J, Wery N, Steyer J P (2015). Bioaerosol emissions from open microalgal processes and their potential environmental impacts: what can be learned from natural and anthropogenic aquatic environments? Current Opinion in Biotechnology, 33: 279–286

    Article  CAS  Google Scholar 

  • Skora J, Matusiak K, Wojewodzki P, Nowak A, Sulyok M, Ligocka A, Okrasa M, Hermann J, Gutarowska B (2016). Evaluation of microbiological and chemical contaminants in poultry farms. International Journal of Environmental Research and Public Health, 13(2): 192

    Article  CAS  Google Scholar 

  • Smets W, Moretti S, Denys S, Lebeer S (2016). Airborne bacteria in the atmosphere: Presence, purpose, and potential. Atmospheric Environment, 139: 214–221

    Article  CAS  Google Scholar 

  • Stein A F, Draxler R R, Rolph G D, Stunder B J B, Cohen M D, Ngan F (2015). NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96(12): 2059–2077

    Article  Google Scholar 

  • Stockwell R E, Ballard L, O’rourke P, Knibbs L D, Morawska L, Bell S C (2019). Indoor hospital air and the impact of ventilation on bioaerosols: a systematic review. Journal of Hospital Infection, 103(2): 175–184

    Article  CAS  Google Scholar 

  • Szylak-Szydlowski M, Kulig A, Miaśkiewicz-Peska E (2016). Seasonal changes in the concentrations of airborne bacteria emitted from a large wastewater treatment plant. International Biodeterioration & Biodegradation, 115: 11–16

    Article  Google Scholar 

  • Tanaka D, Sato K, Goto M, Fujiyoshi S, Maruyama F, Takato S, Shimada T, Sakatoku A, Aoki K, Nakamura S (2019). Airborne microbial communities at high-altitude and suburban sites in Toyama, Japan Suggest a new perspective for bioprospecting. Frontiers in Bioengineering and Biotechnology, 7: 12

    Article  Google Scholar 

  • Tang J W (2009). The effect of environmental parameters on the survival of airborne infectious agents. Journal of the Royal Society, Interface, 6(Suppl 6): S737–S746

    Google Scholar 

  • Tang K, Huang Z, Huang J, Maki T, Zhang S, Shimizu A, Ma X, Shi J, Bi J, Zhou T, Wang G, Zhang L (2018). Characterization of atmospheric bioaerosols along the transport pathway of Asian dust during the Dust-Bioaerosol 2016 Campaign. Atmospheric Chemistry and Physics, 18(10): 7131–7148

    Article  CAS  Google Scholar 

  • Thatiparti D S, Ghia U, Mead K R (2017). Computational fluid dynamics study on the influence of an alternate ventilation configuration on the possible flow path of infectious cough aerosols in a mock airborne infection isolation room. Science and Technology for the Built Environment, 23(2): 355–366

    Article  Google Scholar 

  • Theofel C G, Williams T R, Gutierrez E, Davidson G R, Jay-Russell M, Harris L J (2020). Microorganisms move a short distance into an almond orchard from an adjacent upwind poultry operation. Applied and Environmental Microbiology, 86(15): e00573–20

    Article  CAS  Google Scholar 

  • Uetake J, Tobo Y, Uji Y, Hill T C J, Demott P J, Kreidenweis S M, Misumi R (2019). Seasonal changes of airborne bacterial communities over Tokyo and influence of local meteorology. Frontiers in Microbiology, 10: 1572

    Article  Google Scholar 

  • van Doremalen N, Bushmaker T, Morris D H, Holbrook M G, Gamble A, Williamson B N, Tamin A, Harcourt J L, Thornburg N J, Gerber S I, Lloyd-Smith J O, De Wit E, Munster V J (2020). Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. New England Journal of Medicine, 382(16): 1564–1567

    Article  Google Scholar 

  • Varin T, Lovejoy C, Jungblut A D, Vincent W F, Corbeil J (2012). Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic. Applied and Environmental Microbiology, 78(2): 549–559

    Article  Google Scholar 

  • Vejerano E P, Marr L C (2018). Physico-chemical characteristics of evaporating respiratory fluid droplets. Journal of the Royal Society, Interface, 15(139): 20170939

    Article  CAS  Google Scholar 

  • Veresoglou S D, Rillig M C (2014). Challenging cherished ideas in mycorrhizal ecology: the Baylis postulate. New Phytologist, 204(1): 1–3

    Article  Google Scholar 

  • Vorholt J A (2012). Microbial life in the phyllosphere. Nature Reviews. Microbiology, 10(12): 828–840

    Article  CAS  Google Scholar 

  • Wang J M, Chen C, Li J W, Feng Y M, Lu Q (2019). Different ecological processes determined the alpha and beta components of taxonomic, functional, and phylogenetic diversity for plant communities in dryland regions of Northwest China. PeerJ, 6: e6220

    Article  Google Scholar 

  • Wei J J, Li Y G (2016). Airborne spread of infectious agents in the indoor environment. American Journal of Infection Control, 44(9): S102–S108

    Article  Google Scholar 

  • White J K, Nielsen J L, Madsen A M (2019). Microbial species and biodiversity in settling dust within and between pig farms. Environmental Research, 171: 558–567

    Article  CAS  Google Scholar 

  • William B W, David C C, Wiebe W J (1998). Prokaryotes: The unseen majority. Proceedings of the National Academy of Sciences of the United States of America, 95: 6578–6583

    Article  Google Scholar 

  • Wong L T, Chan W Y, Mui K W, Lai A C K (2010). An experimental and numerical study on deposition of bioaerosols in a scaled chamber. Aerosol Science and Technology, 44(2): 117–128

    Article  CAS  Google Scholar 

  • Xie Z, Fan C, Lu R, Liu P, Wang B, Du S, Jin C, Deng S, Li Y (2018). Characteristics of ambient bioaerosols during haze episodes in China: A review. Environmental Pollution, 243(Pt B): 1930–1942

    Article  CAS  Google Scholar 

  • Xiong J B, Liu Y Q, Lin X G, Zhang H Y, Zeng J, Hou J Z, Yang Y P, Yao T D, Knight R, Chu H Y (2012). Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environmental Microbiology, 14(9): 2457–2466

    Article  CAS  Google Scholar 

  • Xu C, Wei M, Chen J, Zhu C, Li J, Xu X, Wang W, Zhang Q, Ding A, Kan H, Zhao Z, Mellouki A (2019). Profile of inhalable bacteria in PM2.5 at Mt. Tai, China: Abundance, community, and influence of air mass trajectories. Ecotoxicology and Environmental Safety, 168: 110–119

    Article  CAS  Google Scholar 

  • Xu C H, Wei M H, Chen J M, Wang X F, Zhu C, Li J R, Zheng L L, Sui G D, Li W J, Wang W X, Zhang Q Z, Mellouki A (2017). Bacterial characterization in ambient submicron particles during severe haze episodes at Ji’nan, China. Science of the Total Environment, 580: 188–196

    Article  CAS  Google Scholar 

  • Xu G, Han Y, Li L, Liu J (2018). Characterization and source analysis of indoor/outdoor culturable airborne bacteria in a municipal waste-water treatment plant. Journal of Environmental Sciences-China, 74: 71–78

    Article  Google Scholar 

  • Zhang J, Li Y, Xu E, Jiang L, Tang J, Li M, Zhao X, Chen G, Zhu H, Yu X, Zhang X (2019). Bacterial communities in PM2.5 and PM10 in broiler houses at different broiler growth stages in spring. Polish Journal of Veterinary Sciences, 22(3): 495–504

    CAS  Google Scholar 

  • Zhen Q, Deng Y, Wang Y, Wang X, Zhang H, Sun X, Ouyang Z (2017). Meteorological factors had more impact on airborne bacterial communities than air pollutants. Science of the Total Environment, 601–602: 703–712

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 51478045), the Fund Project of Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control (GKECHRC-07), the Fund Project of Shaanxi Key Laboratory of Land Consolidation (2018-ZD04), and the Opening Fund of State Key Laboratory of Green Building in Western China (LSKF202008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanpeng Li.

Additional information

Highlights

• Emission of microbe from local environments is a main source of bioaerosols.

• Regional transport is another important source of the bioaerosols.

• There are many factors affecting the diffusion and transport of bioaerosols.

• Source identification method uncovers the contribution of sources of bioaerosols.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, W., Li, Y., Bai, W. et al. The source and transport of bioaerosols in the air: A review. Front. Environ. Sci. Eng. 15, 44 (2021). https://doi.org/10.1007/s11783-020-1336-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-020-1336-8

Keywords